Python实现朴素贝叶斯的学习与分类过程解析

 概念简介:

朴素贝叶斯基于贝叶斯定理,它假设输入随机变量的特征值是条件独立的,故称之为“朴素”。简单介绍贝叶斯定理:

乍看起来似乎是要求一个概率,还要先得到额外三个概率,有用么?其实这个简单的公式非常贴切人类推理的逻辑,即通过可以观测的数据,推测不可观测的数据。举个例子,也许你在办公室内不知道外面天气是晴天雨天,但是你观测到有同事带了雨伞,那么可以推断外面八成在下雨。

若X 是要输入的随机变量,则Y 是要输出的目标类别。对X 进行分类,即使求的使P(Y|X) 最大的Y值。若X 为n 维特征变量 X = {A1, A2, …..An} ,若输出类别集合为Y = {C1, C2, …. Cm} 。

X 所属最有可能类别 y = argmax P(Y|X), 进行如下推导:

朴素贝叶斯的学习

有公式可知,欲求分类结果,须知如下变量:

各个类别的条件概率,

输入随机变量的特质值的条件概率

示例代码:

import copy

class native_bayes_t:

def __init__(self, character_vec_, class_vec_):

"""

构造的时候需要传入特征向量的值,以数组方式传入

参数1 character_vec_ 格式为 [("character_name",["","",""])]

参数2 为包含所有类别的数组 格式为["class_X", "class_Y"]

"""

self.class_set = {}

# 记录该类别下各个特征值的条件概率

character_condition_per = {}

for character_name in character_vec_:

character_condition_per[character_name[0]] = {}

for character_value in character_name[1]:

character_condition_per[character_name[0]][character_value] = {

'num' : 0, # 记录该类别下该特征值在训练样本中的数量,

'condition_per' : 0.0 # 记录该类别下各个特征值的条件概率

}

for class_name in class_vec:

self.class_set[class_name] = {

'num' : 0, # 记录该类别在训练样本中的数量,

'class_per' : 0.0, # 记录该类别在训练样本中的先验概率,

'character_condition_per' : copy.deepcopy(character_condition_per),

}

#print("init", character_vec_, self.class_set) #for debug

def learn(self, sample_):

"""

learn 参数为训练的样本,格式为

[

{

'character' : {'character_A':'A1'}, #特征向量

'class_name' : 'class_X' #类别名称

}

]

"""

for each_sample in sample:

character_vec = each_sample['character']

class_name = each_sample['class_name']

data_for_class = self.class_set[class_name]

data_for_class['num'] += 1

# 各个特质值数量加1

for character_name in character_vec:

character_value = character_vec[character_name]

data_for_character = data_for_class['character_condition_per'][character_name][character_value]

data_for_character['num'] += 1

# 数量计算完毕, 计算最终的概率值

sample_num = len(sample)

for each_sample in sample:

character_vec = each_sample['character']

class_name = each_sample['class_name']

data_for_class = self.class_set[class_name]

# 计算类别的先验概率

data_for_class['class_per'] = float(data_for_class['num']) / sample_num

# 各个特质值的条件概率

for character_name in character_vec:

character_value = character_vec[character_name]

data_for_character = data_for_class['character_condition_per'][character_name][character_value]

data_for_character['condition_per'] = float(data_for_character['num']) / data_for_class['num']

from pprint import pprint

pprint(self.class_set) #for debug

def classify(self, input_):

"""

对输入进行分类,输入input的格式为

{

"character_A":"A1",

"character_B":"B3",

}

"""

best_class = ''

max_per = 0.0

for class_name in self.class_set:

class_data = self.class_set[class_name]

per = class_data['class_per']

# 计算各个特征值条件概率的乘积

for character_name in input_:

character_per_data = class_data['character_condition_per'][character_name]

per = per * character_per_data[input_[character_name]]['condition_per']

print(class_name, per)

if per >= max_per:

best_class = class_name

return best_class

character_vec = [("character_A",["A1","A2","A3"]), ("character_B",["B1","B2","B3"])]

class_vec = ["class_X", "class_Y"]

bayes = native_bayes_t(character_vec, class_vec)

sample = [

{

'character' : {'character_A':'A1', 'character_B':'B1'}, #特征向量

'class_name' : 'class_X' #类别名称

},

{

'character' : {'character_A':'A3', 'character_B':'B1'}, #特征向量

'class_name' : 'class_X' #类别名称

},

{

'character' : {'character_A':'A3', 'character_B':'B3'}, #特征向量

'class_name' : 'class_X' #类别名称

},

{

'character' : {'character_A':'A2', 'character_B':'B2'}, #特征向量

'class_name' : 'class_X' #类别名称

},

{

'character' : {'character_A':'A2', 'character_B':'B2'}, #特征向量

'class_name' : 'class_Y' #类别名称

},

{

'character' : {'character_A':'A3', 'character_B':'B1'}, #特征向量

'class_name' : 'class_Y' #类别名称

},

{

'character' : {'character_A':'A1', 'character_B':'B3'}, #特征向量

'class_name' : 'class_Y' #类别名称

},

{

'character' : {'character_A':'A1', 'character_B':'B3'}, #特征向量

'class_name' : 'class_Y' #类别名称

},

]

input_data ={

"character_A":"A1",

"character_B":"B3",

}

bayes.learn(sample)

print(bayes.classify(input_data))

总结:

朴素贝叶斯分类实现简单,预测的效率较高

朴素贝叶斯成立的假设是个特征向量各个属性条件独立,建模的时候需要特别注意

以上是 Python实现朴素贝叶斯的学习与分类过程解析 的全部内容, 来源链接: utcz.com/z/332572.html

回到顶部