Python实现朴素贝叶斯的学习与分类过程解析
概念简介:
朴素贝叶斯基于贝叶斯定理,它假设输入随机变量的特征值是条件独立的,故称之为“朴素”。简单介绍贝叶斯定理:
乍看起来似乎是要求一个概率,还要先得到额外三个概率,有用么?其实这个简单的公式非常贴切人类推理的逻辑,即通过可以观测的数据,推测不可观测的数据。举个例子,也许你在办公室内不知道外面天气是晴天雨天,但是你观测到有同事带了雨伞,那么可以推断外面八成在下雨。
若X 是要输入的随机变量,则Y 是要输出的目标类别。对X 进行分类,即使求的使P(Y|X) 最大的Y值。若X 为n 维特征变量 X = {A1, A2, …..An} ,若输出类别集合为Y = {C1, C2, …. Cm} 。
X 所属最有可能类别 y = argmax P(Y|X), 进行如下推导:
朴素贝叶斯的学习
有公式可知,欲求分类结果,须知如下变量:
各个类别的条件概率,
输入随机变量的特质值的条件概率
示例代码:
import copy
class native_bayes_t:
def __init__(self, character_vec_, class_vec_):
"""
构造的时候需要传入特征向量的值,以数组方式传入
参数1 character_vec_ 格式为 [("character_name",["","",""])]
参数2 为包含所有类别的数组 格式为["class_X", "class_Y"]
"""
self.class_set = {}
# 记录该类别下各个特征值的条件概率
character_condition_per = {}
for character_name in character_vec_:
character_condition_per[character_name[0]] = {}
for character_value in character_name[1]:
character_condition_per[character_name[0]][character_value] = {
'num' : 0, # 记录该类别下该特征值在训练样本中的数量,
'condition_per' : 0.0 # 记录该类别下各个特征值的条件概率
}
for class_name in class_vec:
self.class_set[class_name] = {
'num' : 0, # 记录该类别在训练样本中的数量,
'class_per' : 0.0, # 记录该类别在训练样本中的先验概率,
'character_condition_per' : copy.deepcopy(character_condition_per),
}
#print("init", character_vec_, self.class_set) #for debug
def learn(self, sample_):
"""
learn 参数为训练的样本,格式为
[
{
'character' : {'character_A':'A1'}, #特征向量
'class_name' : 'class_X' #类别名称
}
]
"""
for each_sample in sample:
character_vec = each_sample['character']
class_name = each_sample['class_name']
data_for_class = self.class_set[class_name]
data_for_class['num'] += 1
# 各个特质值数量加1
for character_name in character_vec:
character_value = character_vec[character_name]
data_for_character = data_for_class['character_condition_per'][character_name][character_value]
data_for_character['num'] += 1
# 数量计算完毕, 计算最终的概率值
sample_num = len(sample)
for each_sample in sample:
character_vec = each_sample['character']
class_name = each_sample['class_name']
data_for_class = self.class_set[class_name]
# 计算类别的先验概率
data_for_class['class_per'] = float(data_for_class['num']) / sample_num
# 各个特质值的条件概率
for character_name in character_vec:
character_value = character_vec[character_name]
data_for_character = data_for_class['character_condition_per'][character_name][character_value]
data_for_character['condition_per'] = float(data_for_character['num']) / data_for_class['num']
from pprint import pprint
pprint(self.class_set) #for debug
def classify(self, input_):
"""
对输入进行分类,输入input的格式为
{
"character_A":"A1",
"character_B":"B3",
}
"""
best_class = ''
max_per = 0.0
for class_name in self.class_set:
class_data = self.class_set[class_name]
per = class_data['class_per']
# 计算各个特征值条件概率的乘积
for character_name in input_:
character_per_data = class_data['character_condition_per'][character_name]
per = per * character_per_data[input_[character_name]]['condition_per']
print(class_name, per)
if per >= max_per:
best_class = class_name
return best_class
character_vec = [("character_A",["A1","A2","A3"]), ("character_B",["B1","B2","B3"])]
class_vec = ["class_X", "class_Y"]
bayes = native_bayes_t(character_vec, class_vec)
sample = [
{
'character' : {'character_A':'A1', 'character_B':'B1'}, #特征向量
'class_name' : 'class_X' #类别名称
},
{
'character' : {'character_A':'A3', 'character_B':'B1'}, #特征向量
'class_name' : 'class_X' #类别名称
},
{
'character' : {'character_A':'A3', 'character_B':'B3'}, #特征向量
'class_name' : 'class_X' #类别名称
},
{
'character' : {'character_A':'A2', 'character_B':'B2'}, #特征向量
'class_name' : 'class_X' #类别名称
},
{
'character' : {'character_A':'A2', 'character_B':'B2'}, #特征向量
'class_name' : 'class_Y' #类别名称
},
{
'character' : {'character_A':'A3', 'character_B':'B1'}, #特征向量
'class_name' : 'class_Y' #类别名称
},
{
'character' : {'character_A':'A1', 'character_B':'B3'}, #特征向量
'class_name' : 'class_Y' #类别名称
},
{
'character' : {'character_A':'A1', 'character_B':'B3'}, #特征向量
'class_name' : 'class_Y' #类别名称
},
]
input_data ={
"character_A":"A1",
"character_B":"B3",
}
bayes.learn(sample)
print(bayes.classify(input_data))
总结:
朴素贝叶斯分类实现简单,预测的效率较高
朴素贝叶斯成立的假设是个特征向量各个属性条件独立,建模的时候需要特别注意
以上是 Python实现朴素贝叶斯的学习与分类过程解析 的全部内容, 来源链接: utcz.com/z/332572.html