PyTorch的SoftMax交叉熵损失和梯度用法

在PyTorch中可以方便的验证SoftMax交叉熵损失和对输入梯度的计算

关于softmax_cross_entropy求导的过程,可以参考HERE

示例:

# -*- coding: utf-8 -*-

import torch

import torch.autograd as autograd

from torch.autograd import Variable

import torch.nn.functional as F

import torch.nn as nn

import numpy as np

# 对data求梯度, 用于反向传播

data = Variable(torch.FloatTensor([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0], [1.0, 2.0, 3.0]]), requires_grad=True)

# 多分类标签 one-hot格式

label = Variable(torch.zeros((3, 3)))

label[0, 2] = 1

label[1, 1] = 1

label[2, 0] = 1

print(label)

# for batch loss = mean( -sum(Pj*logSj) )

# for one : loss = -sum(Pj*logSj)

loss = torch.mean(-torch.sum(label * torch.log(F.softmax(data, dim=1)), dim=1))

loss.backward()

print(loss, data.grad)

输出:

tensor([[ 0., 0., 1.],

[ 0., 1., 0.],

[ 1., 0., 0.]])

# loss:损失 和 input's grad:输入的梯度

tensor(1.4076) tensor([[ 0.0300, 0.0816, -0.1116],

[ 0.0300, -0.2518, 0.2217],

[-0.3033, 0.0816, 0.2217]])

注意:

对于单输入的loss 和 grad

data = Variable(torch.FloatTensor([[1.0, 2.0, 3.0]]), requires_grad=True)

label = Variable(torch.zeros((1, 3)))

#分别令不同索引位置label为1

label[0, 0] = 1

# label[0, 1] = 1

# label[0, 2] = 1

print(label)

# for batch loss = mean( -sum(Pj*logSj) )

# for one : loss = -sum(Pj*logSj)

loss = torch.mean(-torch.sum(label * torch.log(F.softmax(data, dim=1)), dim=1))

loss.backward()

print(loss, data.grad)

其输出:

# 第一组:

lable: tensor([[ 1., 0., 0.]])

loss: tensor(2.4076)

grad: tensor([[-0.9100, 0.2447, 0.6652]])

# 第二组:

lable: tensor([[ 0., 1., 0.]])

loss: tensor(1.4076)

grad: tensor([[ 0.0900, -0.7553, 0.6652]])

# 第三组:

lable: tensor([[ 0., 0., 1.]])

loss: tensor(0.4076)

grad: tensor([[ 0.0900, 0.2447, -0.3348]])

"""

解释:

对于输入数据 tensor([[ 1., 2., 3.]]) softmax之后的结果如下

tensor([[ 0.0900, 0.2447, 0.6652]])

交叉熵求解梯度推导公式可知 s[0, 0]-1, s[0, 1]-1, s[0, 2]-1 是上面三组label对应的输入数据梯度

"""

pytorch提供的softmax, 和log_softmax 关系

# 官方提供的softmax实现

In[2]: import torch

...: import torch.autograd as autograd

...: from torch.autograd import Variable

...: import torch.nn.functional as F

...: import torch.nn as nn

...: import numpy as np

In[3]: data = Variable(torch.FloatTensor([[1.0, 2.0, 3.0]]), requires_grad=True)

In[4]: data

Out[4]: tensor([[ 1., 2., 3.]])

In[5]: e = torch.exp(data)

In[6]: e

Out[6]: tensor([[ 2.7183, 7.3891, 20.0855]])

In[7]: s = torch.sum(e, dim=1)

In[8]: s

Out[8]: tensor([ 30.1929])

In[9]: softmax = e/s

In[10]: softmax

Out[10]: tensor([[ 0.0900, 0.2447, 0.6652]])

In[11]: # 等同于 pytorch 提供的 softmax

In[12]: org_softmax = F.softmax(data, dim=1)

In[13]: org_softmax

Out[13]: tensor([[ 0.0900, 0.2447, 0.6652]])

In[14]: org_softmax == softmax # 计算结果相同

Out[14]: tensor([[ 1, 1, 1]], dtype=torch.uint8)

# 与log_softmax关系

# log_softmax = log(softmax)

In[15]: _log_softmax = torch.log(org_softmax)

In[16]: _log_softmax

Out[16]: tensor([[-2.4076, -1.4076, -0.4076]])

In[17]: log_softmax = F.log_softmax(data, dim=1)

In[18]: log_softmax

Out[18]: tensor([[-2.4076, -1.4076, -0.4076]])

官方提供的softmax交叉熵求解结果

# -*- coding: utf-8 -*-

import torch

import torch.autograd as autograd

from torch.autograd import Variable

import torch.nn.functional as F

import torch.nn as nn

import numpy as np

data = Variable(torch.FloatTensor([[1.0, 2.0, 3.0], [1.0, 2.0, 3.0], [1.0, 2.0, 3.0]]), requires_grad=True)

log_softmax = F.log_softmax(data, dim=1)

label = Variable(torch.zeros((3, 3)))

label[0, 2] = 1

label[1, 1] = 1

label[2, 0] = 1

print("lable: ", label)

# 交叉熵的计算方式之一

loss_fn = torch.nn.NLLLoss() # reduce=True loss.sum/batch & grad/batch

# NLLLoss输入是log_softmax, target是非one-hot格式的label

loss = loss_fn(log_softmax, torch.argmax(label, dim=1))

loss.backward()

print("loss: ", loss, "\ngrad: ", data.grad)

"""

# 交叉熵计算方式二

loss_fn = torch.nn.CrossEntropyLoss() # the target label is NOT an one-hotted

#CrossEntropyLoss适用于分类问题的损失函数

#input:没有softmax过的nn.output, target是非one-hot格式label

loss = loss_fn(data, torch.argmax(label, dim=1))

loss.backward()

print("loss: ", loss, "\ngrad: ", data.grad)

"""

"""

输出

lable: tensor([[ 0., 0., 1.],

[ 0., 1., 0.],

[ 1., 0., 0.]])

loss: tensor(1.4076)

grad: tensor([[ 0.0300, 0.0816, -0.1116],

[ 0.0300, -0.2518, 0.2217],

[-0.3033, 0.0816, 0.2217]])

通过和示例的输出对比, 发现两者是一样的

以上这篇PyTorch的SoftMax交叉熵损失和梯度用法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 PyTorch的SoftMax交叉熵损失和梯度用法 的全部内容, 来源链接: utcz.com/z/332414.html

回到顶部