python pandas模糊匹配 读取Excel后 获取指定指标的操作

1.首先读取Excel文件

数据代表了各个城市店铺的装修和配置费用,要统计出装修和配置项的总费用并进行加和计算;

2.pandas实现过程

import pandas as pd

#1.读取数据

df = pd.read_excel(r'./data/pfee.xlsx')

print(df)

cols = list(df.columns)

print(cols)

#2.获取含有装修 和 配置 字段的数据

zx_lists=[]

pz_lists=[]

for name in cols:

if '装修' in name:

zx_lists.append(name)

elif '配置' in name:

pz_lists.append(name)

print(zx_lists)

print(pz_lists)

#3.对装修和配置项费用进行求和计算

df['装修-求和'] =df[zx_lists].apply(lambda x:x.sum(),axis=1)

df['配置-求和'] = df[pz_lists].apply(lambda x:x.sum(),axis=1)

print(df)

补充:pandas 中dataframe 中的模糊匹配 与pyspark dataframe 中的模糊匹配

1.pandas dataframe

匹配一个很简单,批量匹配如下

df_obj[df_obj['title'].str.contains(r'.*?n.*')] #使用正则表达式进行模糊匹配,*匹配0或无限次,?匹配0或1次

pyspark dataframe 中模糊匹配有两种方式

2.spark dataframe api, filter rlike 联合使用

df1=df.filter("uri rlike

'com.tencent.tmgp.sgame|%E8%80%85%E8%8D%A3%E8%80%80_|android.ugc.live|\

%e7%88f%e8%a7%86%e9%a2%91|%E7%%8F%E8%A7%86%E9%A2%91'").groupBy("uri").\

count().sort("count", ascending=False)

注意点:

1.rlike 后面进行批量匹配用引号包裹即可

2.rlike 中要匹配特殊字符的话,不需要转义

3.rlike '\\\\bapple\\\\b' 虽然也可以匹配但是匹配数量不全,具体原因不明,欢迎讨论。

In [5]: df.filter("name rlike '%'").show()

+---+------+-----+

|age|height| name|

+---+------+-----+

| 4| 140|A%l%i|

| 6| 180| i%ce|

+---+------+-----+

3.spark sql

spark.sql("select uri from t where uri like '%com.tencent.tmgp.sgame%' or uri like 'douyu'").show(5)

如果要批量匹配的话,就需要在后面继续添加uri like '%blabla%',就有点繁琐了。

对了这里需要提到原生sql 的批量匹配,regexp 就很方便了,跟rlike 有点相似

mysql> select count(*) from url_parse where uri regexp 'android.ugc.live|com.tencent.tmgp.sgame';

+----------+

| count(*) |

+----------+

| 9768 |

+----------+

1 row in set (0.52 sec)

于是这里就可以将sql中regexp 应用到spark sql 中

In [9]: spark.sql('select * from t where name regexp "%l|t|_"').show()

+---+------+------+

|age|height| name|

+---+------+------+

| 1| 150|Al_ice|

| 4| 140| A%l%i|

+---+------+------+

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。

以上是 python pandas模糊匹配 读取Excel后 获取指定指标的操作 的全部内容, 来源链接: utcz.com/z/327674.html

回到顶部