Pandas的read_csv函数参数分析详解

函数原型

pd.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', thousands=None, decimal=b'.', lineterminator=None, quotechar='"', quoting=0, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=False, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, skip_footer=0, doublequote=True, delim_whitespace=False, as_recarray=False, compact_ints=False, use_unsigned=False, low_memory=True, buffer_lines=None, memory_map=False, float_precision=None)

必填参数

filepath_or_buffer : str,pathlib。str, pathlib.Path,

py._path.local.LocalPath or any object with a read() method

(such as a file handle or StringIO)

读取文件路径,可以是URL,可用URL类型包括:http, ftp, s3和文件。

常用参数

sep :str, default ‘,'

指定分隔符。如果不指定参数,则会尝试使用逗号分隔。csv文件一般为逗号分隔符。

delimiter : str, default None

定界符,备选分隔符(如果指定该参数,则sep参数失效)

delim_whitespace :boolean, default False.

指定空格(例如' ‘或者' ‘)是否作为分隔符使用,等效于设定sep='\s+'。

如果这个参数设定为Ture那么delimiter 参数失效。

header :int or list of ints, default ‘infer'

指定行数用来作为列名,数据开始行数。如果文件中没有列名,则默认为0,否则设置为None。对于数据读取有表头和没表头的情况很实用

header :int or list of ints, default ‘infer'

指定行数用来作为列名,数据开始行数。如果文件中没有列名,则默认为0,否则设置为None。

names :  array-like, default None

用于结果的列名列表,对各列重命名,即添加表头。

如数据有表头,但想用新的表头,可以设置header=0,names=['a','b']实现表头定制。

index_col : int or sequence or False, default None

用作行索引的列编号或者列名,如果给定一个序列则有多个行索引。

可使用index_col=[0,1]来指定文件中的第1和2列为索引列。

usecols : array-like, default None

返回一个数据子集,即选取某几列,不读取整个文件的内容,有助于加快速度和降低内存。

usecols=[1,2]或usercols=['a','b']

squeeze : boolean, default False

如果文件只包含一列,则返回一个Series

prefix :  str, default None

在没有列标题时,给列添加前缀。例如:添加‘X' 成为 X0, X1, ...

mangle_dupe_cols : boolean, default True

重复的列,将‘X'...'X'表示为‘X.0'...'X.N'。如果设定为False则会将所有重名列覆盖。

不太常用参数

dtype : Type name or dict of column -> type, default None

每列数据的数据类型。例如 {‘a': np.float64, ‘b': np.int32}

engine :  {‘c', ‘python'}, optional

使用的分析引擎。可以选择C或者是python。C引擎快但是Python引擎功能更加完备。

converters : dict, default None

列转换函数的字典。key可以是列名或者列的序号。

true_values和false_values :  list, default None

Values to consider as True or False

skipinitialspace :boolean, default False

忽略分隔符后的空白(默认为False,即不忽略)

skiprows : list-like or integer, default None

需要忽略的行数(从文件开始处算起),或需要跳过的行号列表(从0开始)。

skipfooter : int, default 0

从文件尾部开始忽略。 (c引擎不支持)

nrows : int, default None

需要读取的行数(从文件头开始算起)。

na_values : scalar, str, list-like, or dict, default None

一组用于替换NA/NaN的值。如果传参,需要制定特定列的空值。

默认为‘1.#IND', ‘1.#QNAN', ‘N/A', ‘NA', ‘NULL', ‘NaN', ‘nan'`.

keep_default_na :  bool, default True

如果指定na_values参数,并且keep_default_na=False,那么默认的NaN将被覆盖,否则添加。

na_filter : boolean, default True

是否检查丢失值(空字符串或者是空值)。

对于大文件来说数据集中没有空值,设定na_filter=False可以提升读取速度。

verbose :boolean, default False

是否打印各种解析器的输出信息,例如:“非数值列中缺失值的数量”等。

skip_blank_lines :boolean, default True

如果为True,则跳过空行;否则记为NaN。

encoding : str, default None

指定字符集类型,通常指定为'utf-8'. List of Python standard encodings

dialect : str or csv.Dialect instance, default None

如果没有指定特定的语言,如果sep大于一个字符则忽略。具体查看csv.Dialect 文档

tupleize_cols : boolean, default False

Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

error_bad_lines : boolean, default True

如果一行包含太多的列,那么默认不会返回DataFrame ,如果设置成false,那么会将改行剔除(只能在C解析器下使用)。

warn_bad_lines : boolean, default True

如果error_bad_lines =False,并且warn_bad_lines =True 那么所有的“bad lines”将会被输出(只能在C解析器下使用)。

low_memory : boolean, default True

分块加载到内存,在低内存消耗中解析。但是可能出现类型混淆。

确保类型不被混淆需要设置为False。或者使用dtype 参数指定类型。

注意使用chunksize 或者iterator 参数分块读入会将整个文件读入到一个Dataframe,

而忽略类型(只能在C解析器中有效)

日期类型相关参数

parse_dates : boolean or list of ints or names or list of lists or dict, default False

boolean. True -> 解析索引

list of ints or names. e.g. If [1, 2, 3] -> 解析1,2,3列的值作为独立的日期列;

list of lists. e.g. If [[1, 3]] -> 合并1,3列作为一个日期列使用

dict, e.g. {‘foo' : [1, 3]} -> 将1,3列合并,并给合并后的列起名为"foo"

示例:df=pd.read_csv(file_path,parse_dates=['time1','time2']),

把time1和time2两列解析为日期格式。

这里不得不说,很遗憾中文不行,比如‘4月5日'这种格式就不能解析。

 infer_datetime_format :boolean, default False

如果设定为True并且parse_dates 可用,那么pandas将尝试转换为日期类型,如果可以转换,转换方法并解析。

在某些情况下会快5~10倍。

keep_date_col : boolean, default False

如果连接多列解析日期,则保持参与连接的列。默认为False。

date_parser :  function, default None

于解析日期的函数,默认使用dateutil.parser.parser来做转换。

Pandas尝试使用三种不同的方式解析,如果遇到问题则使用下一种方式。

1.使用一个或者多个arrays(由parse_dates指定)作为参数;

2.连接指定多列字符串作为一个列作为参数;

3.每行调用一次date_parser函数来解析一个或者多个字符串(由parse_dates指定)作为参数。

dayfirst : boolean, default False

DD/MM格式的日期类型

大文件常用参数

iterator : boolean, default False

返回一个TextFileReader 对象,以便逐块处理文件。

chunksize : int, default None

文件块的大小, See IO Tools docs for more informationon iterator and chunksize.

chunksize : int, default None

文件块的大小, See IO Tools docs for more informationon iterator and chunksize.

chunksize : int, default None

文件块的大小, See IO Tools docs for more informationon iterator and chunksize.

decimal : str, default ‘.'

字符中的小数点 (例如:欧洲数据使用',‘).

float_precision : string, default None

Specifies which converter the C engine should use for floating-point values.

The options are None for the ordinary converter, high for the high-precision converter,

and round_trip for the round-trip converter.

lineterminator : str (length 1), default None

行分割符,只在C解析器下使用。

quotechar : str (length 1), optional

引号,用作标识开始和解释的字符,引号内的分割符将被忽略。

quoting : int or csv.QUOTE_* instance, default 0

控制csv中的引号常量。

可选 QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3)

doublequote : boolean, default True

双引号,当单引号已经被定义,并且quoting 参数不是QUOTE_NONE的时候,

使用双引号表示引号内的元素作为一个元素使用。

escapechar : str (length 1), default None

当quoting 为QUOTE_NONE时,指定一个字符使的不受分隔符限值。

comment : str, default None

标识着多余的行不被解析。如果该字符出现在行首,这一行将被全部忽略。

这个参数只能是一个字符,空行(就像skip_blank_lines=True)注释行被header和skiprows忽略一样。

例如如果指定comment='#' 解析‘#empty\na,b,c\n1,2,3' 以header=0 那么返回结果将是以'a,b,c'作为header。

读取多个文件

#读取多个文件

import pandas

import glob

for r in glob.glob("test*.csv"):

csv=pandas.read_csv(r)

csv.to_csv("test.txt",mode="a+")

以上是 Pandas的read_csv函数参数分析详解 的全部内容, 来源链接: utcz.com/z/323713.html

回到顶部