C++实现二叉树基本操作详解

树是一种重要的非线性数据结构,二叉树是树型结构的一种重要类型。本学年论文介绍了二叉树的定义,二叉树的存储结构,二叉树的相关术语,以此引入二叉树这一概念,为展开二叉树的基本操作做好理论铺垫。二叉树的基本操作主要包含以下几个模块:二叉树的遍历方法,计算二叉树的结点个数,计算二叉树的叶子结点个数,二叉树深度的求解等内容。

前序遍历(递归&非递归)

  • 访问根节点
  • 前序访问左子树
  • 前序访问右子树

//前序非递归

void PrevOrder()

{

stack<Node*> s;

Node *cur = _root;

while (cur || !s.empty())

{

while (cur)

{

cout << cur->_data << " ";

s.push(cur);

cur = cur->_left;

}

//此时当前节点的左子树已遍历完毕

Node *tmp = s.top();

s.pop();

cur = tmp->_right;

}

cout << endl;

}

//前序递归

void PrevOrderR()

{

_PrevOrder(_root);

cout << endl;

}

void _PrevOrder(Node *root)

{

if (root == NULL) //必须有递归出口!!!

return;

cout << root->_data << " ";

_PrevOrder(root->_left);

_PrevOrder(root->_right);

}

中序遍历(递归&非递归)

  • 中序访问左子树
  • 访问根节点
  • 中序访问右子树

//中序非递归

void InOrder()

{

stack<Node*> s;

Node *cur = _root;

while (cur || !s.empty())

{

while (cur)

{

s.push(cur);

cur = cur->_left;

}

//此时当前节点的左子树已遍历完毕

Node *tmp = s.top();

cout << tmp->_data << " ";

s.pop();

cur = tmp->_right;

}

cout << endl;

}

//中序递归

void InOrderR()

{

_InOrder(_root);

cout << endl;

}

void _InOrder(Node *root)

{

if (root == NULL)

return;

_InOrder(root->_left);

cout << root->_data << " ";

_InOrder(root->_right);

}

后序遍历(递归&非递归)

//后序非递归

//后序遍历可能会出现死循环,所以要记录下前一个访问的节点

void PostOrder()

{

stack<Node*> s;

Node *cur = _root;

Node *prev = NULL;

while (cur || !s.empty())

{

while (cur)

{

s.push(cur);

cur = cur->_left;

}

Node *tmp = s.top();

if (tmp->_right && tmp->_right != prev)

{

cur = tmp->_right;

}

else

{

cout << tmp->_data << " ";

prev = tmp;

s.pop();

}

}

cout << endl;

}

//后序递归

void PostOrderR()

{

_PostOrder(_root);

cout << endl;

}

void _PostOrder(Node *root)

{

if (root == NULL)

return;

_PostOrder(root->_left);

_PostOrder(root->_right);

cout << root->_data << " ";

}

层序遍历

从根节点开始,依次访问每层结点。

利用队列先进先出的特性,把每层结点从左至右依次放入队列。

void LevelOrder() //利用队列!!!

{

queue<Node*> q;

Node *front = NULL;

//1.push根节点

if (_root)

{

q.push(_root);

}

//2.遍历当前节点,push当前节点的左右孩子,pop当前节点

//3.遍历当前节点的左孩子,再遍历右孩子,循环直至队列为空

while (!q.empty())

{

front = q.front();

cout << front->_data << " ";

if (front->_left)

q.push(front->_left);

if (front->_right)

q.push(front->_right);

q.pop();

}

cout << endl;

}

求二叉树的高度

size_t Depth()

{

return _Depth(_root);

}

size_t _Depth(Node *root)

{

if (root == NULL)

return 0;

else if (root->_left == NULL && root->_right == NULL)

return 1;

else

{

size_t leftDepth = _Depth(root->_left) + 1;

size_t rightDepth = _Depth(root->_right) + 1;

return leftDepth > rightDepth ? leftDepth : rightDepth;

}

}

求叶子节点的个数

size_t LeafSize()

{

return _LeafSize(_root);

}

size_t _LeafSize(Node *root)

{

if (root == NULL)

return 0;

else if (root->_left == NULL && root->_right == NULL)

return 1;

else

return _LeafSize(root->_left) + _LeafSize(root->_right);

}

求二叉树第k层的节点个数

size_t GetKLevel(int k)

{

return _GetKLevel(_root, k);

}

size_t _GetKLevel(Node *root, int k)

{

if (root == NULL)

return 0;

else if (k == 1)

return 1;

else

return _GetKLevel(root->_left, k - 1) + _GetKLevel(root->_right, k - 1);

}

完整代码如下:

template<class T>

struct BinaryTreeNode

{

T _data;

BinaryTreeNode *_left;

BinaryTreeNode *_right;

BinaryTreeNode(const T& d)

:_data(d)

, _left(NULL)

, _right(NULL)

{}

};

template<class T>

class BinaryTree

{

public:

typedef BinaryTreeNode<T> Node;

BinaryTree()

:_root(NULL)

{}

BinaryTree(T *arr, size_t n, const T& invalid)

{

size_t index = 0;

_root = _CreateBinaryTree(arr, n, invalid, index);

}

BinaryTree(const BinaryTree<T>& t)

:_root(NULL)

{

_root = _CopyTree(t._root);

}

BinaryTree<T>& operator=(const BinaryTree<T>& t)

{

if (this != t)

{

Node *tmp = new Node(t._root);

if (tmp != NULL)

{

delete _root;

_root = tmp;

}

}

return *this;

}

~BinaryTree()

{

_DestroyTree(_root);

cout << endl;

}

//前序非递归

void PrevOrder()

{

stack<Node*> s;

Node *cur = _root;

while (cur || !s.empty())

{

while (cur)

{

cout << cur->_data << " ";

s.push(cur);

cur = cur->_left;

}

//此时当前节点的左子树已遍历完毕

Node *tmp = s.top();

s.pop();

cur = tmp->_right;

}

cout << endl;

}

//前序递归

void PrevOrderR()

{

_PrevOrder(_root);

cout << endl;

}

//中序非递归

void InOrder()

{

stack<Node*> s;

Node *cur = _root;

while (cur || !s.empty())

{

while (cur)

{

s.push(cur);

cur = cur->_left;

}

//此时当前节点的左子树已遍历完毕

Node *tmp = s.top();

cout << tmp->_data << " ";

s.pop();

cur = tmp->_right;

}

cout << endl;

}

//中序递归

void InOrderR()

{

_InOrder(_root);

cout << endl;

}

//后序非递归

//后序遍历可能会出现死循环,所以要记录下前一个访问的节点

void PostOrder()

{

stack<Node*> s;

Node *cur = _root;

Node *prev = NULL;

while (cur || !s.empty())

{

while (cur)

{

s.push(cur);

cur = cur->_left;

}

Node *tmp = s.top();

if (tmp->_right && tmp->_right != prev)

{

cur = tmp->_right;

}

else

{

cout << tmp->_data << " ";

prev = tmp;

s.pop();

}

}

cout << endl;

}

//后序递归

void PostOrderR()

{

_PostOrder(_root);

cout << endl;

}

void LevelOrder() //利用队列!!!

{

queue<Node*> q;

Node *front = NULL;

//1.push根节点

if (_root)

{

q.push(_root);

}

//2.遍历当前节点,push当前节点的左右孩子,pop当前节点

//3.遍历当前节点的左孩子,再遍历右孩子,循环直至队列为空

while (!q.empty())

{

front = q.front();

cout << front->_data << " ";

if (front->_left)

q.push(front->_left);

if (front->_right)

q.push(front->_right);

q.pop();

}

cout << endl;

}

size_t Size()

{

return _Size(_root);

}

size_t LeafSize()

{

return _LeafSize(_root);

}

size_t GetKLevel(int k)

{

return _GetKLevel(_root, k);

}

size_t Depth()

{

return _Depth(_root);

}

Node* Find(const T& d)

{

return _Find(_root, d);

}

protected:

Node* _CreateBinaryTree(T *arr, size_t n, const T& invalid, size_t& index)

{

Node *root = NULL;

if (index < n && arr[index] != invalid)

{

root = new Node(arr[index]);

index++;

root->_left = _CreateBinaryTree(arr, n, invalid, index);

index++;

root->_right = _CreateBinaryTree(arr, n, invalid, index);

}

return root;

}

Node* _CopyTree(Node *root)

{

Node *newRoot = NULL;

if (root)

{

newRoot = new Node(root->_data);

newRoot->_left = _CopyTree(root->_left);

newRoot->_right = _CopyTree(root->_right);

}

return newRoot;

}

void _DestroyTree(Node *root)

{

if (root)

{

_Destroy(root->_left);

_Destroy(root->_right);

delete root;

}

}

void _PrevOrder(Node *root)

{

if (root == NULL) //必须有递归出口!!!

return;

cout << root->_data << " ";

_PrevOrder(root->_left);

_PrevOrder(root->_right);

}

void _InOrder(Node *root)

{

if (root == NULL)

return;

_InOrder(root->_left);

cout << root->_data << " ";

_InOrder(root->_right);

}

void _PostOrder(Node *root)

{

if (root == NULL)

return;

_PostOrder(root->_left);

_PostOrder(root->_right);

cout << root->_data << " ";

}

size_t _Size(Node *root)

{

if (root == NULL)

return 0;

else

return _Size(root->_left) + _Size(root->_right) + 1;

}

size_t _LeafSize(Node *root)

{

if (root == NULL)

return 0;

else if (root->_left == NULL && root->_right == NULL)

return 1;

else

return _LeafSize(root->_left) + _LeafSize(root->_right);

}

size_t _GetKLevel(Node *root, int k)

{

if (root == NULL)

return 0;

else if (k == 1)

return 1;

else

return _GetKLevel(root->_left, k - 1) + _GetKLevel(root->_right, k - 1);

}

size_t _Depth(Node *root)

{

if (root == NULL)

return 0;

else if (root->_left == NULL && root->_right == NULL)

return 1;

else

{

size_t leftDepth = _Depth(root->_left) + 1;

size_t rightDepth = _Depth(root->_right) + 1;

return leftDepth > rightDepth ? leftDepth : rightDepth;

}

}

Node* _Find(Node *root, const T& d)

{

if (root == NULL)

return NULL;

else if (root->_data == d)

return root;

else if (Node *ret = _Find(root->_left, d))

return ret;

else

_Find(root->_right, d);

}

protected:

Node *_root;

};

以上是 C++实现二叉树基本操作详解 的全部内容, 来源链接: utcz.com/z/319417.html

回到顶部