python矩阵/字典实现最短路径算法
前言:好像感觉各种博客的最短路径python实现都花里胡哨的?输出不明显,唉,可能是因为不想读别人的代码吧(明明自己学过离散)。然后可能有些人是用字典实现的?的确字典的话,比较省空间。改天,也用字典试下。先贴个图吧。
然后再贴代码:
_=inf=999999#inf
def Dijkstra_all_minpath(start,matrix):
length=len(matrix)#该图的节点数
path_array=[]
temp_array=[]
path_array.extend(matrix[start])#深复制
temp_array.extend(matrix[start])#深复制
temp_array[start] = inf#临时数组会把处理过的节点的值变成inf,表示不是最小权值的节点了
already_traversal=[start]#start已处理
path_parent=[start]*length#用于画路径,记录此路径中该节点的父节点
while(len(already_traversal)<length):
i= temp_array.index(min(temp_array))#找最小权值的节点的坐标
temp_array[i]=inf
path=[]#用于画路径
path.append(str(i))
k=i
while(path_parent[k]!=start):#找该节点的父节点添加到path,直到父节点是start
path.append(str(path_parent[k]))
k=path_parent[k]
path.append(str(start))
path.reverse()#path反序产生路径
print(str(i)+':','->'.join(path))#打印路径
already_traversal.append(i)#该索引已经处理了
for j in range(length):#这个不用多说了吧
if j not in already_traversal:
if (path_array[i]+matrix[i][j])<path_array[j]:
path_array[j] = temp_array[j] =path_array[i]+matrix[i][j]
path_parent[j]=i#说明父节点是i
return path_array
#领接矩阵
adjacency_matrix=[[0,10,_,30,100],
[10,0,50,_,_],
[_,50,0,20,10],
[30,_,20,0,60],
[100,_,10,60,0]
]
print(Dijkstra_all_minpath(4,adjacency_matrix))
然后输出:
2: 4->2
3: 4->2->3
0: 4->2->3->0
1: 4->2->1
[60, 60, 10, 30, 0]
主要是这样输出的话比较好看,然后这样算是直接算一个点到所有点的最短路径吧。那么写下字典实现吧
def Dijkstra_all_minpath_for_graph(start,graph):
inf = 999999 # inf
length=len(graph)
path_graph={k:inf for k in graph.keys()}
already_traversal=set()
path_graph[start]=0
min_node=start#初始化最小权值点
already_traversal.add(min_node)#把找到的最小节点添加进去
path_parent={k:start for k in graph.keys()}
while(len(already_traversal)<=length):
p = min_node
if p!=start:
path = []
path.append(str(p))
while (path_parent[p] != start):#找该节点的父节点添加到path,直到父节点是start
path.append(str(path_parent[p]))
p=path_parent[p]
path.append(str(start))
path.reverse()#反序
print(str(min_node) + ':', '->'.join(path))#打印
if(len(already_traversal)==length):break
for k in path_graph.keys():#更新距离
if k not in already_traversal:
if k in graph[min_node].keys() and (path_graph[min_node]+graph[min_node][k])<path_graph[k]:
path_graph[k]=path_graph[min_node]+graph[min_node][k]
path_parent[k]=min_node
min_value=inf
for k in path_graph.keys():#找最小节点
if k not in already_traversal:
if path_graph[k]<min_value:
min_node=k
min_value=path_graph[k]
already_traversal.add(min_node)#把找到最小节点添加进去
return path_graph
adjacency_graph={0:{1:10,3:30,4:100},
1:{0:10,2:50},
2:{1:50,3:20,4:10},
3:{0:30,2:20,4:60},
4:{0:100,2:10,3:60}}
print(Dijkstra_all_minpath_for_graph(4,adjacency_graph))
输出:
2: 4->2
3: 4->2->3
0: 4->2->3->0
1: 4->2->1
{0: 60, 1: 60, 2: 10, 3: 30, 4: 0}
还行吧,有时间再看看networkx这个库怎么说。
以上是 python矩阵/字典实现最短路径算法 的全部内容, 来源链接: utcz.com/z/318757.html