pygame实现俄罗斯方块游戏(基础篇2)

接上章《pygame实现俄罗斯方块游戏(基础篇1)》继续写俄罗斯方块游戏

五、计算方块之间的碰撞

在Panel类里增加函数

def check_overlap(self, diffx, diffy):

for x,y in self.moving_block.get_rect_arr():

for rx,ry in self.rect_arr:

if x+diffx==rx and y+diffy==ry:

return True

return False

修改move_block函数的判断,增加check_overlap函数检测

def move_block(self):

if self.moving_block is None: create_move_block()

if self.moving_block.can_move(0,1) and not self.check_overlap(0,1):

self.moving_block.move(0,1)

else:

self.add_block(self.moving_block)

self.create_move_block()

现在的效果是方块可以堆叠了

六、键盘控制左右移动

导入变量

from pygame.locals import KEYDOWN,K_LEFT,K_RIGHT,K_UP,K_DOWN

Panel类里增加一个控制移动方块的函数

def control_block(self, diffx, diffy):

if self.moving_block.can_move(diffx,diffy) and not self.check_overlap(diffx, diffy):

self.moving_block.move(diffx,diffy)

鼠标事件监听处做下键盘的响应

if event.type == KEYDOWN:

if event.key == K_LEFT: main_panel.control_block(-1,0)

if event.key == K_RIGHT: main_panel.control_block(1,0)

if event.key == K_UP: pass # 变形过会实现

if event.key == K_DOWN: main_panel.control_block(0,1)

由于Block类的can_move函数没有实现左右移动的判断,所以需要再对can_move

增加左右边界的处理

def can_move(self,xdiff,ydiff):

for x,y in self.rect_arr:

if y+ydiff>=20: return False

if x+xdiff<0 or x+xdiff>=10: return False

return True

现在,左右的移动也正常了,效果图如下

贴下目前的代码

# -*- coding=utf-8 -*-

import random

import pygame

from pygame.locals import KEYDOWN,K_LEFT,K_RIGHT,K_UP,K_DOWN

class Panel(object): # 用于绘制整个游戏窗口的版面

rect_arr=[] # 已经落底下的方块

moving_block=None # 正在落下的方块

def __init__(self,bg, block_size, position):

self._bg=bg;

self._x,self._y,self._width,self._height=position

self._block_size=block_size

self._bgcolor=[0,0,0]

def add_block(self,block):

for rect in block.get_rect_arr():

self.rect_arr.append(rect)

def create_move_block(self):

block = create_block()

block.move(5-2,-2) # 方块挪到中间

self.moving_block=block

def check_overlap(self, diffx, diffy, check_arr=None):

if check_arr is None: check_arr = self.moving_block.get_rect_arr()

for x,y in check_arr:

for rx,ry in self.rect_arr:

if x+diffx==rx and y+diffy==ry:

return True

return False

def control_block(self, diffx, diffy):

if self.moving_block.can_move(diffx,diffy) and not self.check_overlap(diffx, diffy):

self.moving_block.move(diffx,diffy)

def move_block(self):

if self.moving_block is None: create_move_block()

if self.moving_block.can_move(0,1) and not self.check_overlap(0,1):

self.moving_block.move(0,1)

else:

self.add_block(self.moving_block)

self.create_move_block()

def paint(self):

mid_x=self._x+self._width/2

pygame.draw.line(self._bg,self._bgcolor,[mid_x,self._y],[mid_x,self._y+self._height],self._width) # 用一个粗线段来填充背景

# 绘制已经落底下的方块

bz=self._block_size

for rect in self.rect_arr:

x,y=rect

pygame.draw.line(self._bg,[0,0,255],[self._x+x*bz+bz/2,self._y+y*bz],[self._x+x*bz+bz/2,self._y+(y+1)*bz],bz)

pygame.draw.rect(self._bg,[255,255,255],[self._x+x*bz,self._y+y*bz,bz+1,bz+1],1)

# 绘制正在落下的方块

if self.move_block:

for rect in self.moving_block.get_rect_arr():

x,y=rect

pygame.draw.line(self._bg,[0,0,255],[self._x+x*bz+bz/2,self._y+y*bz],[self._x+x*bz+bz/2,self._y+(y+1)*bz],bz)

pygame.draw.rect(self._bg,[255,255,255],[self._x+x*bz,self._y+y*bz,bz+1,bz+1],1)

class Block(object):

def __init__(self):

self.rect_arr=[]

def get_rect_arr(self): # 用于获取方块种的四个矩形列表

return self.rect_arr

def move(self,xdiff,ydiff): # 用于移动方块的方法

self.new_rect_arr=[]

for x,y in self.rect_arr:

self.new_rect_arr.append((x+xdiff,y+ydiff))

self.rect_arr=self.new_rect_arr

def can_move(self,xdiff,ydiff):

for x,y in self.rect_arr:

if y+ydiff>=20: return False

if x+xdiff<0 or x+xdiff>=10: return False

return True

class LongBlock(Block):

def __init__(self, n=None): # 两种形态

super(LongBlock, self).__init__()

if n is None: n=random.randint(0,1)

self.rect_arr=[(1,0),(1,1),(1,2),(1,3)] if n==0 else [(0,2),(1,2),(2,2),(3,2)]

class SquareBlock(Block): # 一种形态

def __init__(self, n=None):

super(SquareBlock, self).__init__()

self.rect_arr=[(1,1),(1,2),(2,1),(2,2)]

class ZBlock(Block): # 两种形态

def __init__(self, n=None):

super(ZBlock, self).__init__()

if n is None: n=random.randint(0,1)

self.rect_arr=[(2,0),(2,1),(1,1),(1,2)] if n==0 else [(0,1),(1,1),(1,2),(2,2)]

class SBlock(Block): # 两种形态

def __init__(self, n=None):

super(SBlock, self).__init__()

if n is None: n=random.randint(0,1)

self.rect_arr=[(1,0),(1,1),(2,1),(2,2)] if n==0 else [(0,2),(1,2),(1,1),(2,1)]

class LBlock(Block): # 四种形态

def __init__(self, n=None):

super(LBlock, self).__init__()

if n is None: n=random.randint(0,3)

if n==0: self.rect_arr=[(1,0),(1,1),(1,2),(2,2)]

elif n==1: self.rect_arr=[(0,1),(1,1),(2,1),(0,2)]

elif n==2: self.rect_arr=[(0,0),(1,0),(1,1),(1,2)]

else: self.rect_arr=[(0,1),(1,1),(2,1),(2,0)]

class JBlock(Block): # 四种形态

def __init__(self, n=None):

super(JBlock, self).__init__()

if n is None: n=random.randint(0,3)

if n==0: self.rect_arr=[(1,0),(1,1),(1,2),(0,2)]

elif n==1: self.rect_arr=[(0,1),(1,1),(2,1),(0,0)]

elif n==2: self.rect_arr=[(2,0),(1,0),(1,1),(1,2)]

else: self.rect_arr=[(0,1),(1,1),(2,1),(2,2)]

class TBlock(Block): # 四种形态

def __init__(self, n=None):

super(TBlock, self).__init__()

if n is None: n=random.randint(0,3)

if n==0: self.rect_arr=[(0,1),(1,1),(2,1),(1,2)]

elif n==1: self.rect_arr=[(1,0),(1,1),(1,2),(0,1)]

elif n==2: self.rect_arr=[(0,1),(1,1),(2,1),(1,0)]

else: self.rect_arr=[(1,0),(1,1),(1,2),(2,1)]

def create_block():

n = random.randint(0,19)

if n==0: return SquareBlock(n=0)

elif n==1 or n==2: return LongBlock(n=n-1)

elif n==3 or n==4: return ZBlock(n=n-3)

elif n==5 or n==6: return SBlock(n=n-5)

elif n>=7 and n<=10: return LBlock(n=n-7)

elif n>=11 and n<=14: return JBlock(n=n-11)

else: return TBlock(n=n-15)

def run():

pygame.init()

space=30

main_block_size=30

main_panel_width=main_block_size*10

main_panel_height=main_block_size*20

screencaption = pygame.display.set_caption('Tetris')

screen = pygame.display.set_mode((main_panel_width+160+space*3,main_panel_height+space*2)) #设置窗口长宽

main_panel=Panel(screen,main_block_size,[space,space,main_panel_width,main_panel_height])

pygame.key.set_repeat(200, 30)

main_panel.create_move_block()

diff_ticks = 300 # 移动一次蛇头的事件,单位毫秒

ticks = pygame.time.get_ticks() + diff_ticks

while True:

for event in pygame.event.get():

if event.type == pygame.QUIT:

pygame.quit()

exit()

if event.type == KEYDOWN:

if event.key == K_LEFT: main_panel.control_block(-1,0)

if event.key == K_RIGHT: main_panel.control_block(1,0)

if event.key == K_UP: pass # 变形过会实现

if event.key == K_DOWN: main_panel.control_block(0,1)

screen.fill((100,100,100)) # 将界面设置为灰色

main_panel.paint() # 主面盘绘制

pygame.display.update() # 必须调用update才能看到绘图显示

if pygame.time.get_ticks() >= ticks:

ticks+=diff_ticks

main_panel.move_block()

run()

七、控制变形

变形的实现,我们对每个方块子类的初始化函数稍作修改,将获取形状做一个独立的get_shape函数,并且给每个子类增加一个变量用于记录当前形态id,用一个变量用于标识每种方块的形态数量,以T型为例,修改后代码如下

class TBlock(Block): # 四种形态

shape_id=0

shape_num=4

def __init__(self, n=None):

super(TBlock, self).__init__()

if n is None: n=random.randint(0,3)

self.shape_id=n

self.rect_arr=self.get_shape()

def get_shape(self):

if self.shape_id==0: return [(0,1),(1,1),(2,1),(1,2)]

elif self.shape_id==1: return [(1,0),(1,1),(1,2),(0,1)]

elif self.shape_id==2: return [(0,1),(1,1),(2,1),(1,0)]

else: return [(1,0),(1,1),(1,2),(2,1)]

这样我们在Block父类里可以加一个change函数,用于变换至下一形态,由于变化时要保持原来的移动位置,我们增加sx,sy两个变量将方块移动过的位置存着,便于在变化时使用

class Block(object):

sx=0

sy=0

def __init__(self):

self.rect_arr=[]

def get_rect_arr(self): # 用于获取方块种的四个矩形列表

return self.rect_arr

def move(self,xdiff,ydiff): # 用于移动方块的方法

self.sx+=xdiff

self.sy+=ydiff

self.new_rect_arr=[]

for x,y in self.rect_arr:

self.new_rect_arr.append((x+xdiff,y+ydiff))

self.rect_arr=self.new_rect_arr

def can_move(self,xdiff,ydiff):

for x,y in self.rect_arr:

if y+ydiff>=20: return False

if x+xdiff<0 or x+xdiff>=10: return False

return True

def change(self):

self.shape_id+=1 # 下一形态

if self.shape_id >= self.shape_num:

self.shape_id=0

arr = self.get_shape()

new_arr = []

for x,y in arr:

if x+self.sx<0 or x+self.sx>=10: # 变形不能超出左右边界

self.shape_id -= 1

if self.shape_id < 0: self.shape_id = self.shape_num - 1

return None

new_arr.append([x+self.sx,y+self.sy])

return new_arr

在Panel类里的再增加一个change函数,直接调用moving_block的change

def change_block(self):

if self.moving_block:

new_arr = self.moving_block.change()

if new_arr and not self.check_overlap(0, 0, check_arr=new_arr): # 变形不能造成方块重叠

self.moving_block.rect_arr=new_arr

最后将key_up事件的响应加入change_block的调用就好了

if event.key == K_UP: main_panel.change_block()

现在已经实现了,变形和移动了,方块基本可以正常下落了

八、方块的消除

这个计算主要是处理Panel类的rect_arr,如果数组中出现某一行有10个就符合消除条件,为简化计算,我们将这些矩形按y值存到一个数组中,便于计算

def check_clear(self):

tmp_arr = [[] for i in range(20)]

# 先将方块按行存入数组

for x,y in self.rect_arr:

if y<0: return

tmp_arr[y].append([x,y])

clear_num=0

clear_lines=set([])

y_clear_diff_arr=[[] for i in range(20)]

# 从下往上计算可以消除的行,并记录消除行后其他行的向下偏移数量

for y in range(19,-1,-1):

if len(tmp_arr[y])==10:

clear_lines.add(y)

clear_num += 1

y_clear_diff_arr[y] = clear_num

if clear_num>0:

new_arr=[]

# 跳过移除行,并将其他行做偏移

for y in range(19,-1,-1):

if y in clear_lines: continue

tmp_row = tmp_arr[y]

y_clear_diff=y_clear_diff_arr[y]

for x,y in tmp_row:

new_arr.append([x,y+y_clear_diff])

self.rect_arr = new_arr

在Panel的move_block处增加check_clear的调用

def move_block(self):

if self.moving_block is None: create_move_block()

if self.moving_block.can_move(0,1) and not self.check_overlap(0,1):

self.moving_block.move(0,1)

else:

self.add_block(self.moving_block)

self.check_clear()

self.create_move_block()

现在游戏可以消除方块了

九、增加空格键使快速落下

快速落下可以快速调用Panel的move_block函数,我们在move_block函数增加一个返回值,用于标记使正常下移还是移到底部后新的方块   

def move_block(self):

if self.moving_block is None: create_move_block()

if self.moving_block.can_move(0,1) and not self.check_overlap(0,1):

self.moving_block.move(0,1)

return 1

else:

self.add_block(self.moving_block)

self.check_clear()

self.create_move_block()

return 2

在键盘响应处增加键盘处理

if event.key == K_SPACE:

while main_panel.move_block()==1:

pass

十、增加游戏结束判断

游戏结束同样可以在Panel类的move_block中处理,如果一个方块到底,并且消除进行后,发现有方块的y值小于0,那么一定是失败了

修改Panel类的move_block函数

def move_block(self):

if self.moving_block is None: create_move_block()

if self.moving_block.can_move(0,1) and not self.check_overlap(0,1):

self.moving_block.move(0,1)

return 1

else:

self.add_block(self.moving_block)

self.check_clear()

for x,y in self.rect_arr:

if y<0: return 9 # 游戏失败

self.create_move_block()

return 2

增加一个变量记录游戏状态

game_state = 1 # 游戏状态1.表示正常 2.表示失败

计时器处修改程序

if game_state == 1 and pygame.time.get_ticks() >= ticks:

ticks+=diff_ticks

if main_panel.move_block()==9: game_state = 2

鼠标键盘响应空格键中也增加一下判断

if event.key == K_SPACE:

flag = main_panel.move_block()

while flag==1:

flag = main_panel.move_block()

if flag == 9: game_state = 2

最后增加游戏结束文字的绘制

if game_state == 2:

myfont = pygame.font.Font(None,30)

white = 255,255,255

textImage = myfont.render("Game over", True, white)

screen.blit(textImage, (160,190))

好了,现在会提示游戏结束了

最后附下目前的完整代码

# -*- coding=utf-8 -*-

import random

import pygame

from pygame.locals import KEYDOWN,K_LEFT,K_RIGHT,K_UP,K_DOWN,K_SPACE

class Panel(object): # 用于绘制整个游戏窗口的版面

rect_arr=[] # 已经落底下的方块

moving_block=None # 正在落下的方块

def __init__(self,bg, block_size, position):

self._bg=bg;

self._x,self._y,self._width,self._height=position

self._block_size=block_size

self._bgcolor=[0,0,0]

def add_block(self,block):

for rect in block.get_rect_arr():

self.rect_arr.append(rect)

def create_move_block(self):

block = create_block()

block.move(5-2,-2) # 方块挪到中间

self.moving_block=block

def check_overlap(self, diffx, diffy, check_arr=None):

if check_arr is None: check_arr = self.moving_block.get_rect_arr()

for x,y in check_arr:

for rx,ry in self.rect_arr:

if x+diffx==rx and y+diffy==ry:

return True

return False

def control_block(self, diffx, diffy):

if self.moving_block.can_move(diffx,diffy) and not self.check_overlap(diffx, diffy):

self.moving_block.move(diffx,diffy)

def change_block(self):

if self.moving_block:

new_arr = self.moving_block.change()

if new_arr and not self.check_overlap(0, 0, check_arr=new_arr): # 变形不能造成方块重叠

self.moving_block.rect_arr=new_arr

def move_block(self):

if self.moving_block is None: create_move_block()

if self.moving_block.can_move(0,1) and not self.check_overlap(0,1):

self.moving_block.move(0,1)

return 1

else:

self.add_block(self.moving_block)

self.check_clear()

for x,y in self.rect_arr:

if y<0: return 9 # 游戏失败

self.create_move_block()

return 2

def check_clear(self):

tmp_arr = [[] for i in range(20)]

# 先将方块按行存入数组

for x,y in self.rect_arr:

if y<0: return

tmp_arr[y].append([x,y])

clear_num=0

clear_lines=set([])

y_clear_diff_arr=[[] for i in range(20)]

# 从下往上计算可以消除的行,并记录消除行后其他行的向下偏移数量

for y in range(19,-1,-1):

if len(tmp_arr[y])==10:

clear_lines.add(y)

clear_num += 1

y_clear_diff_arr[y] = clear_num

if clear_num>0:

new_arr=[]

# 跳过移除行,并将其他行做偏移

for y in range(19,-1,-1):

if y in clear_lines: continue

tmp_row = tmp_arr[y]

y_clear_diff=y_clear_diff_arr[y]

for x,y in tmp_row:

new_arr.append([x,y+y_clear_diff])

self.rect_arr = new_arr

def paint(self):

mid_x=self._x+self._width/2

pygame.draw.line(self._bg,self._bgcolor,[mid_x,self._y],[mid_x,self._y+self._height],self._width) # 用一个粗线段来填充背景

# 绘制已经落底下的方块

bz=self._block_size

for rect in self.rect_arr:

x,y=rect

pygame.draw.line(self._bg,[0,0,255],[self._x+x*bz+bz/2,self._y+y*bz],[self._x+x*bz+bz/2,self._y+(y+1)*bz],bz)

pygame.draw.rect(self._bg,[255,255,255],[self._x+x*bz,self._y+y*bz,bz+1,bz+1],1)

# 绘制正在落下的方块

if self.move_block:

for rect in self.moving_block.get_rect_arr():

x,y=rect

pygame.draw.line(self._bg,[0,0,255],[self._x+x*bz+bz/2,self._y+y*bz],[self._x+x*bz+bz/2,self._y+(y+1)*bz],bz)

pygame.draw.rect(self._bg,[255,255,255],[self._x+x*bz,self._y+y*bz,bz+1,bz+1],1)

class Block(object):

sx=0

sy=0

def __init__(self):

self.rect_arr=[]

def get_rect_arr(self): # 用于获取方块种的四个矩形列表

return self.rect_arr

def move(self,xdiff,ydiff): # 用于移动方块的方法

self.sx+=xdiff

self.sy+=ydiff

self.new_rect_arr=[]

for x,y in self.rect_arr:

self.new_rect_arr.append((x+xdiff,y+ydiff))

self.rect_arr=self.new_rect_arr

def can_move(self,xdiff,ydiff):

for x,y in self.rect_arr:

if y+ydiff>=20: return False

if x+xdiff<0 or x+xdiff>=10: return False

return True

def change(self):

self.shape_id+=1 # 下一形态

if self.shape_id >= self.shape_num:

self.shape_id=0

arr = self.get_shape()

new_arr = []

for x,y in arr:

if x+self.sx<0 or x+self.sx>=10: # 变形不能超出左右边界

self.shape_id -= 1

if self.shape_id < 0: self.shape_id = self.shape_num - 1

return None

new_arr.append([x+self.sx,y+self.sy])

return new_arr

class LongBlock(Block):

shape_id=0

shape_num=2

def __init__(self, n=None): # 两种形态

super(LongBlock, self).__init__()

if n is None: n=random.randint(0,1)

self.shape_id=n

self.rect_arr=self.get_shape()

def get_shape(self):

return [(1,0),(1,1),(1,2),(1,3)] if self.shape_id==0 else [(0,2),(1,2),(2,2),(3,2)]

class SquareBlock(Block): # 一种形态

shape_id=0

shape_num=1

def __init__(self, n=None):

super(SquareBlock, self).__init__()

self.rect_arr=self.get_shape()

def get_shape(self):

return [(1,1),(1,2),(2,1),(2,2)]

class ZBlock(Block): # 两种形态

shape_id=0

shape_num=2

def __init__(self, n=None):

super(ZBlock, self).__init__()

if n is None: n=random.randint(0,1)

self.shape_id=n

self.rect_arr=self.get_shape()

def get_shape(self):

return [(2,0),(2,1),(1,1),(1,2)] if self.shape_id==0 else [(0,1),(1,1),(1,2),(2,2)]

class SBlock(Block): # 两种形态

shape_id=0

shape_num=2

def __init__(self, n=None):

super(SBlock, self).__init__()

if n is None: n=random.randint(0,1)

self.shape_id=n

self.rect_arr=self.get_shape()

def get_shape(self):

return [(1,0),(1,1),(2,1),(2,2)] if self.shape_id==0 else [(0,2),(1,2),(1,1),(2,1)]

class LBlock(Block): # 四种形态

shape_id=0

shape_num=4

def __init__(self, n=None):

super(LBlock, self).__init__()

if n is None: n=random.randint(0,3)

self.shape_id=n

self.rect_arr=self.get_shape()

def get_shape(self):

if self.shape_id==0: return [(1,0),(1,1),(1,2),(2,2)]

elif self.shape_id==1: return [(0,1),(1,1),(2,1),(0,2)]

elif self.shape_id==2: return [(0,0),(1,0),(1,1),(1,2)]

else: return [(0,1),(1,1),(2,1),(2,0)]

class JBlock(Block): # 四种形态

shape_id=0

shape_num=4

def __init__(self, n=None):

super(JBlock, self).__init__()

if n is None: n=random.randint(0,3)

self.shape_id=n

self.rect_arr=self.get_shape()

def get_shape(self):

if self.shape_id==0: return [(1,0),(1,1),(1,2),(0,2)]

elif self.shape_id==1: return [(0,1),(1,1),(2,1),(0,0)]

elif self.shape_id==2: return [(2,0),(1,0),(1,1),(1,2)]

else: return [(0,1),(1,1),(2,1),(2,2)]

class TBlock(Block): # 四种形态

shape_id=0

shape_num=4

def __init__(self, n=None):

super(TBlock, self).__init__()

if n is None: n=random.randint(0,3)

self.shape_id=n

self.rect_arr=self.get_shape()

def get_shape(self):

if self.shape_id==0: return [(0,1),(1,1),(2,1),(1,2)]

elif self.shape_id==1: return [(1,0),(1,1),(1,2),(0,1)]

elif self.shape_id==2: return [(0,1),(1,1),(2,1),(1,0)]

else: return [(1,0),(1,1),(1,2),(2,1)]

def create_block():

n = random.randint(0,19)

if n==0: return SquareBlock(n=0)

elif n==1 or n==2: return LongBlock(n=n-1)

elif n==3 or n==4: return ZBlock(n=n-3)

elif n==5 or n==6: return SBlock(n=n-5)

elif n>=7 and n<=10: return LBlock(n=n-7)

elif n>=11 and n<=14: return JBlock(n=n-11)

else: return TBlock(n=n-15)

def run():

pygame.init()

space=30

main_block_size=30

main_panel_width=main_block_size*10

main_panel_height=main_block_size*20

screencaption = pygame.display.set_caption('Tetris')

screen = pygame.display.set_mode((main_panel_width+160+space*3,main_panel_height+space*2)) #设置窗口长宽

main_panel=Panel(screen,main_block_size,[space,space,main_panel_width,main_panel_height])

pygame.key.set_repeat(200, 30)

main_panel.create_move_block()

diff_ticks = 300 # 移动一次蛇头的事件,单位毫秒

ticks = pygame.time.get_ticks() + diff_ticks

game_state = 1 # 游戏状态1.表示正常 2.表示失败

while True:

for event in pygame.event.get():

if event.type == pygame.QUIT:

pygame.quit()

exit()

if event.type == KEYDOWN:

if event.key == K_LEFT: main_panel.control_block(-1,0)

if event.key == K_RIGHT: main_panel.control_block(1,0)

if event.key == K_UP: main_panel.change_block()

if event.key == K_DOWN: main_panel.control_block(0,1)

if event.key == K_SPACE:

flag = main_panel.move_block()

while flag==1:

flag = main_panel.move_block()

if flag == 9: game_state = 2

screen.fill((100,100,100)) # 将界面设置为灰色

main_panel.paint() # 主面盘绘制

if game_state == 2:

myfont = pygame.font.Font(None,30)

white = 255,255,255

textImage = myfont.render("Game over", True, white)

screen.blit(textImage, (160,190))

pygame.display.update() # 必须调用update才能看到绘图显示

if game_state == 1 and pygame.time.get_ticks() >= ticks:

ticks+=diff_ticks

if main_panel.move_block()==9: game_state = 2 # 游戏结束

run()

今天先写到这,下章继续

以上是 pygame实现俄罗斯方块游戏(基础篇2) 的全部内容, 来源链接: utcz.com/z/318283.html

回到顶部