mac使用python识别图形验证码功能

前言

最近在研究验证码相关的操作,所以准备记录下安装以及使用的过程。虽然之前对验证码的破解有所了解的,但是之前都是简单使用之后就不用了,没有记录一个详细的过程,所以后面再用起来也要重新从网上查找资料比较麻烦,所以这里准备对研究过程的关键点做一个记录。

首先这篇文章,主要是研究图形验证码,后期会不定时拓展内容。

在网上查了很多版本的图形验证码识别,目前看到最多的两个模块是pytesseract和tesserocr,但是因为我这里安装tesserocr的时候各种出错,所以最终我锁定了使用pytesseract。

那么接下来,就记录下安装以及使用过程。这里的系统环境是mac os 10.14.

安装tesserocr

brew install tesserocr

因为pytesseract依赖于tesserocr所以首先需要先安装tesserocr这个软件。接下来就是安装python相关的包

安装python所需要的包

pip3 install pytesseract

pip3 install pillow

安装pytesseract是ocr识别图片上的字,因为验证码的识别难度高低不同,所以在这个过程中需要对图片做一定的处理,这就需要使用处理图片的模块pillow。

一个简单的demo

import pytesseract

from PIL import Image

import os

def binarizing(img, threshold):

"""传入image对象进行灰度、二值处理"""

pixdata = img.load()

w, h = img.size

# 遍历所有像素,大于阈值的为黑色

for y in range(h):

for x in range(w):

if pixdata[x, y] < threshold:

pixdata[x, y] = 0

else:

pixdata[x, y] = 255

return img

_temp = os.path.dirname(__file__)

file_path = os.path.join(_temp, 'code2.jpg')

print("file_path", file_path)

image = Image.open(file_path)

image = image.convert('L')

threshold = 157

table = []

# 接下来是二值化处理

# 遍历所有像素,大于阈值的为黑色,threshold是阀值

image = binarizing(image, threshold)

result = pytesseract.image_to_string(image)

print(result)

示例中的图片

需要用到的图像知识:

对于彩色图像,不管其图像格式是PNG,还是BMP,或者JPG,在PIL中,使用Image模块的open()函数打开后,返回的图像对象的模式都是“RGB”。而对于灰度图像,不管其图像格式是PNG,还是BMP,或者JPG,打开后,其模式为“L”也就是我们说的灰度化的一个操作。除此之外,还有其他的模式,不过我们在处理验证码的时候是将其转为灰度模式,所以就不强调其他的模式了。

模式“L”

模式“L”为灰色图像,它的每个像素用8个bit表示,0表示黑,255表示白,其他数字表示不同的灰度。在PIL中,从模式“RGB”转换为“L”模式是按照下面的公式转换的:

L = R * 299/1000 + G * 587/1000+ B * 114/1000

通过灰度化之后的图片变为

灰度化我们还要对其进行二值化操作

二值化操作

二值化故名思议,就是整个图像所有像素只有两个值可以选择,一个是黑(灰度为0),一个是白(灰度为255)。二值化的好处就是将图片上的有用信息和无用信息区分开来,比如二值化之后的验证码图片,验证码像素为黑色,背景和干扰点为白色,这样后面对验证码像素处理的时候就会很方便。对于简单的图形验证码,到这里基本上就够了,但是如果有干扰线,还要进行除干扰线的操作。

对应的代码为

def binarizing(img, threshold):

"""传入image对象进行灰度、二值处理"""

pixdata = img.load()

w, h = img.size

# 遍历所有像素,大于阈值的为黑色

for y in range(h):

for x in range(w):

if pixdata[x, y] < threshold:

pixdata[x, y] = 0 #小于阀值设为0,0是黑色

else:

pixdata[x, y] = 255 0 #大于阀值设为255,255是白色

return img

此时的图片效果为

可以看到图片变得锐化了很多,这个时候再去识别就比较好识别了。

去干扰线

常见的4邻域、8邻域算法。所谓的X邻域算法,可以参考手机九宫格输入法,按键5为要判断的像素点,4邻域就是判断上下左右,8邻域就是判断周围8个像素点。如果这4或8个点中255的个数大于某个阈值则判断这个点为噪音,阈值可以根据实际情况修改。

使用cv2处理

除此之外还可以使用cv2模块进行处理。

安装

pip install opencv-python

代码示例

# -*- coding: utf-8 -*-

import cv2

import numpy as np

import os

_temp = os.path.dirname(__file__)

file_path = os.path.join(_temp, 'code2.jpg')

def remove_noise(img, k=4):

###8领域过滤

img2 = img.copy()

# img处理数据,k过滤条件

w, h = img2.shape

def get_neighbors(img3, r, c):

count = 0

for i in [r - 1, r, r + 1]:

for j in [c - 1, c, c + 1]:

if img3[i, j] > 10: # 纯白色

count += 1

return count

# 两层for循环判断所有的点

for x in range(w):

for y in range(h):

if x == 0 or y == 0 or x == w - 1 or y == h - 1:

img2[x, y] = 255

else:

n = get_neighbors(img2, x, y) # 获取邻居数量,纯白色的邻居

if n > k:

img2[x, y] = 255

return img2

img = cv2.imread(file_path)

# 将图片灰度化处理,降维,加权进行灰度化c

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

t, gray2 = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY)

cv2.imshow('threshold', gray2)

result = remove_noise(gray2)

cv2.imshow('8neighbors', result)

cv2.waitKey(0)

#cv2.destroyAllWindows()

总结

以上所述是小编给大家介绍的mac使用python识别图形验证码功能,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

以上是 mac使用python识别图形验证码功能 的全部内容, 来源链接: utcz.com/z/318163.html

回到顶部