使用 C++ 查找按位 OR >= K 的子数组的数量

在本文中,我们将简要说明在 C++ 中解决按位 OR>=K 的子数组的数量。所以我们有一个数组 arr[] 和一个整数 K,我们必须找到OR(bitwise or)大于或等于 K的子数组的数量。所以这里是给定问题的例子 -

Input: arr[] = {1, 2, 3} K = 3

Output: 4

Bitwise OR of sub-arrays:

{1} = 1

{1, 2} = 3

{1, 2, 3} = 3

{2} = 2

{2, 3} = 3

{3} = 3

4 sub-arrays have bitwise OR ≥ 3

Input: arr[] = {3, 4, 5} K = 6

Output: 2

寻找解决方案的方法

现在我们将使用两种不同的方法来使用 C++ 解决问题 -

蛮力

在这种方法中,我们将简单地遍历所有可以形成的子数组并检查 OR 是否大于或等于 K。如果是,那么我们将增加我们的答案。

示例

#include <bits/stdc++.h>

using namespace std;

int main(){

    int arr[] = {1, 2, 3}; // 给定数组。

    int k = 3;

    int size = sizeof(arr) / sizeof(int); // 我们数组的大小。

    int answer = 0; // 计数器变量。

    for(int i = 0; i < size; i++){

        int bitwise = 0; // 我们与 k 比较的变量。

        for(int j = i; j < size; j++){ // 从 i 开始的所有子数组。

            bitwise = bitwise | arr[j];

            if(bitwise >= k) // if bitwise >= k increment answer.

               answer++;

        }

    }

    cout << answer << "\n";

    return 0;

}

输出结果
4

这种方法非常简单,但它有它的缺陷,因为这种方法对于更高的约束不是很好,因为这种方法的时间复杂度是O(N*N),其中 N 是给定数组的大小,所以现在我们要寻找一种有效的方法。

有效的方法

在这种方法中,我们将使用 OR 运算符的一些属性,即即使我们添加更多数字它也不会减少,因此如果我们从 i 到 j 得到一个 OR 大于或等于 K 的子数组,那么每个包含范围 {i,j} 的子数组的 OR 大于 K,我们正在利用此属性并改进我们的代码。

示例

#include <bits/stdc++.h>

#define N 1000

using namespace std;

int t[4*N];

void build(int* a, int v, int start, int end){ // 分段树构建

    if(start == end){

       t[v] = a[start];

       return;

    }

    int mid = (start + end)/2;

    build(a, 2 * v, start, mid);

    build(a, 2 * v + 1, mid + 1, end);

    t[v] = t[2 * v] | t[2 * v + 1];

}

int query(int v, int tl, int tr, int l, int r){ // 用于处理我们的查询或子数组。

    if (l > r)

       return 0;

    if(tl == l && tr == r)

       return t[v];

    int tm = (tl + tr)/2;

    int q1 = query(2*v, tl, tm, l, min(tm, r));

    int q2 = query((2*v)+1, tm+1, tr, max(tm+1, l), r);

    return q1 | q2;

}

int main(){

    int arr[] = {1, 2, 3}; // 给定数组。

    int k = 3;

    int size = sizeof(arr) / sizeof(arr[0]); // 我们数组的大小。

    int answer = 0; // 计数器变量。

    build(arr, 1, 0, size - 1); // 构建段树。

    for(int i = 0; i < size; i++){

        int start = i, end = size-1;

        int ind = INT_MAX;

        while(start <= end){ // 二分查找

            int mid = (start + end) / 2;

            if(query(1, 0, size-1, i, mid) >= k){ // 检查子数组。

               ind = min(mid, ind);

               end = mid - 1;

            }

            else

               start = mid + 1;

        }

        if(ind != INT_MAX) // 如果 ind 改变,则增加答案。

            answer += size - ind;

    }

    cout << answer << "\n";

    return 0;

}

输出结果
4

在这种方法中,我们使用二分搜索和段树,这有助于将时间复杂度从O(N*N) 降低到 O( Nlog(N)),这是非常好的。现在,与前一个程序不同,该程序还可以用于更大的约束。

结论

在本文中,我们nlog(n)使用二叉搜索和分段树解决了一个问题,即在 O( ) 时间复杂度中找到 OR >= K 的子数组的数量。我们还学习了针对这个问题的 C++ 程序以及我们解决这个问题的完整方法(普通和高效)。我们可以用其他语言编写相同的程序,例如 C、java、python 和其他语言。希望这篇文章对您有所帮助。

以上是 使用 C++ 查找按位 OR >= K 的子数组的数量 的全部内容, 来源链接: utcz.com/z/317263.html

回到顶部