python编写分类决策树的代码

决策树通常在机器学习中用于分类。

优点:计算复杂度不高,输出结果易于理解,对中间值缺失不敏感,可以处理不相关特征数据。

缺点:可能会产生过度匹配问题。

适用数据类型:数值型和标称型。

1.信息增益

划分数据集的目的是:将无序的数据变得更加有序。组织杂乱无章数据的一种方法就是使用信息论度量信息。通常采用信息增益,信息增益是指数据划分前后信息熵的减少值。信息越无序信息熵越大,获得信息增益最高的特征就是最好的选择。

熵定义为信息的期望,符号xi的信息定义为:

其中p(xi)为该分类的概率。

熵,即信息的期望值为:

计算信息熵的代码如下:

def calcShannonEnt(dataSet):

numEntries = len(dataSet)

labelCounts = {}

for featVec in dataSet:

currentLabel = featVec[-1]

if currentLabel not in labelCounts:

labelCounts[currentLabel] = 0

labelCounts[currentLabel] += 1

shannonEnt = 0

for key in labelCounts:

shannonEnt = shannonEnt - (labelCounts[key]/numEntries)*math.log2(labelCounts[key]/numEntries)

return shannonEnt

可以根据信息熵,按照获取最大信息增益的方法划分数据集。

2.划分数据集

划分数据集就是将所有符合要求的元素抽出来。

def splitDataSet(dataSet,axis,value):

retDataset = []

for featVec in dataSet:

if featVec[axis] == value:

newVec = featVec[:axis]

newVec.extend(featVec[axis+1:])

retDataset.append(newVec)

return retDataset

3.选择最好的数据集划分方式

信息增益是熵的减少或者是信息无序度的减少。

def chooseBestFeatureToSplit(dataSet):

numFeatures = len(dataSet[0]) - 1

bestInfoGain = 0

bestFeature = -1

baseEntropy = calcShannonEnt(dataSet)

for i in range(numFeatures):

allValue = [example[i] for example in dataSet]#列表推倒,创建新的列表

allValue = set(allValue)#最快得到列表中唯一元素值的方法

newEntropy = 0

for value in allValue:

splitset = splitDataSet(dataSet,i,value)

newEntropy = newEntropy + len(splitset)/len(dataSet)*calcShannonEnt(splitset)

infoGain = baseEntropy - newEntropy

if infoGain > bestInfoGain:

bestInfoGain = infoGain

bestFeature = i

return bestFeature

4.递归创建决策树

结束条件为:程序遍历完所有划分数据集的属性,或每个分支下的所有实例都具有相同的分类。

当数据集已经处理了所有属性,但是类标签还不唯一时,采用多数表决的方式决定叶子节点的类型。

def majorityCnt(classList):

classCount = {}

for value in classList:

if value not in classCount: classCount[value] = 0

classCount[value] += 1

classCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)

return classCount[0][0]

生成决策树:

def createTree(dataSet,labels):

classList = [example[-1] for example in dataSet]

labelsCopy = labels[:]

if classList.count(classList[0]) == len(classList):

return classList[0]

if len(dataSet[0]) == 1:

return majorityCnt(classList)

bestFeature = chooseBestFeatureToSplit(dataSet)

bestLabel = labelsCopy[bestFeature]

myTree = {bestLabel:{}}

featureValues = [example[bestFeature] for example in dataSet]

featureValues = set(featureValues)

del(labelsCopy[bestFeature])

for value in featureValues:

subLabels = labelsCopy[:]

myTree[bestLabel][value] = createTree(splitDataSet(dataSet,bestFeature,value),subLabels)

return myTree

5.测试算法——使用决策树分类

同样采用递归的方式得到分类结果。

def classify(inputTree,featLabels,testVec):

currentFeat = list(inputTree.keys())[0]

secondTree = inputTree[currentFeat]

try:

featureIndex = featLabels.index(currentFeat)

except ValueError as err:

print('yes')

try:

for value in secondTree.keys():

if value == testVec[featureIndex]:

if type(secondTree[value]).__name__ == 'dict':

classLabel = classify(secondTree[value],featLabels,testVec)

else:

classLabel = secondTree[value]

return classLabel

except AttributeError:

print(secondTree)

6.完整代码如下

import numpy as np

import math

import operator

def createDataSet():

dataSet = [[1,1,'yes'],

[1,1,'yes'],

[1,0,'no'],

[0,1,'no'],

[0,1,'no'],]

label = ['no surfacing','flippers']

return dataSet,label

def calcShannonEnt(dataSet):

numEntries = len(dataSet)

labelCounts = {}

for featVec in dataSet:

currentLabel = featVec[-1]

if currentLabel not in labelCounts:

labelCounts[currentLabel] = 0

labelCounts[currentLabel] += 1

shannonEnt = 0

for key in labelCounts:

shannonEnt = shannonEnt - (labelCounts[key]/numEntries)*math.log2(labelCounts[key]/numEntries)

return shannonEnt

def splitDataSet(dataSet,axis,value):

retDataset = []

for featVec in dataSet:

if featVec[axis] == value:

newVec = featVec[:axis]

newVec.extend(featVec[axis+1:])

retDataset.append(newVec)

return retDataset

def chooseBestFeatureToSplit(dataSet):

numFeatures = len(dataSet[0]) - 1

bestInfoGain = 0

bestFeature = -1

baseEntropy = calcShannonEnt(dataSet)

for i in range(numFeatures):

allValue = [example[i] for example in dataSet]

allValue = set(allValue)

newEntropy = 0

for value in allValue:

splitset = splitDataSet(dataSet,i,value)

newEntropy = newEntropy + len(splitset)/len(dataSet)*calcShannonEnt(splitset)

infoGain = baseEntropy - newEntropy

if infoGain > bestInfoGain:

bestInfoGain = infoGain

bestFeature = i

return bestFeature

def majorityCnt(classList):

classCount = {}

for value in classList:

if value not in classCount: classCount[value] = 0

classCount[value] += 1

classCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)

return classCount[0][0]

def createTree(dataSet,labels):

classList = [example[-1] for example in dataSet]

labelsCopy = labels[:]

if classList.count(classList[0]) == len(classList):

return classList[0]

if len(dataSet[0]) == 1:

return majorityCnt(classList)

bestFeature = chooseBestFeatureToSplit(dataSet)

bestLabel = labelsCopy[bestFeature]

myTree = {bestLabel:{}}

featureValues = [example[bestFeature] for example in dataSet]

featureValues = set(featureValues)

del(labelsCopy[bestFeature])

for value in featureValues:

subLabels = labelsCopy[:]

myTree[bestLabel][value] = createTree(splitDataSet(dataSet,bestFeature,value),subLabels)

return myTree

def classify(inputTree,featLabels,testVec):

currentFeat = list(inputTree.keys())[0]

secondTree = inputTree[currentFeat]

try:

featureIndex = featLabels.index(currentFeat)

except ValueError as err:

print('yes')

try:

for value in secondTree.keys():

if value == testVec[featureIndex]:

if type(secondTree[value]).__name__ == 'dict':

classLabel = classify(secondTree[value],featLabels,testVec)

else:

classLabel = secondTree[value]

return classLabel

except AttributeError:

print(secondTree)

if __name__ == "__main__":

dataset,label = createDataSet()

myTree = createTree(dataset,label)

a = [1,1]

print(classify(myTree,label,a))

7.编程技巧

extend与append的区别

newVec.extend(featVec[axis+1:])

retDataset.append(newVec)

extend([]),是将列表中的每个元素依次加入新列表中

append()是将括号中的内容当做一项加入到新列表中

列表推到

创建新列表的方式

allValue = [example[i] for example in dataSet]

提取列表中唯一的元素

allValue = set(allValue)

列表/元组排序,sorted()函数

classCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)

列表的复制

labelsCopy = labels[:]

代码及数据集下载:决策树

以上是 python编写分类决策树的代码 的全部内容, 来源链接: utcz.com/z/313526.html

回到顶部