OpenCV3.0+Python3.6实现特定颜色的物体追踪

一、环境

win10、Python3.6、OpenCV3.x;编译器:pycharm5.0.3

二、实现目标

根据需要追踪的物体颜色,设定阈值,在视频中框选出需要追踪的物体。

三、实现步骤

1)根据需要追踪的物体颜色,设定颜色阈值,获取追踪物体的掩膜

代码:generate_threshold.py

# -*- coding : utf-8 -*-

# Author: Tom Yu

import cv2

import numpy as np

cap = cv2.VideoCapture(0)#获取摄像头图像

# img = cv2.imread("timg1.jpg")

# hsv_img = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)

def nothing(x):

pass

def createbars():

"""

实现创建六个滑块的作用,分别控制H、S、V的最高值与最低值

"""

cv2.createTrackbar("H_l","image",0,180,nothing)

cv2.createTrackbar("H_h","image",0,180,nothing)

cv2.createTrackbar("S_l","image",0,255,nothing)

cv2.createTrackbar("S_h","image",0,255,nothing)

cv2.createTrackbar("V_l","image",0,255,nothing)

cv2.createTrackbar("V_h","image",0,255,nothing)

cv2.namedWindow("image")

createbars()#创建六个滑块

lower = np.array([0,0,0])#设置初始值

upper = np.array([0,0,0])

while True:

ret,frame = cap.read()

hsv_frame = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)#将图片由BGR颜色空间转化成HSV空间,HSV可以更好地分割颜色图形

lower[0]=cv2.getTrackbarPos("H_l","image")#获取"H_l"滑块的实时值

upper[0]=cv2.getTrackbarPos("H_h","image")#获取"H_h"滑块的实时值

lower[1]=cv2.getTrackbarPos("S_l","image")

upper[1]=cv2.getTrackbarPos("S_h","image")

lower[2]=cv2.getTrackbarPos("V_l","image")

upper[2]=cv2.getTrackbarPos("V_h","image")

mask = cv2.inRange(hsv_frame,lower,upper)#cv2.inrange()函数通过设定的最低、最高阈值获得图像的掩膜

cv2.imshow("img",frame)

cv2.imshow("mask",mask)

if cv2.waitKey(1)&0xff == 27:

break

cv2.destroyAllWindows()

实现效果:获取需要追踪的物体颜色阈值

2)根据获取到的阈值,设定阈值范围,在视频中追踪特定颜色的物体并用框选框出所需追踪的物体

代码:tracking_object.py

# -*- coding : utf-8 -*-

# Author: Tom Yu

import cv2

import numpy as np

cap = cv2.VideoCapture(0)#获取摄像头视频

while True:

ret,frame = cap.read()#读取每一帧图片

hsv_frame = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)#将每一帧图片转化HSV空间颜色

"""

依据之前的脚本获取的阈值设置最高值与最低值

"""

lower = np.array([0,104,205])

upper = np.array([15,208,255])

mask = cv2.inRange(hsv_frame,lower,upper)

img,conts,hier = cv2.findContours(mask,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)#找出边界

cv2.drawContours(frame,conts,-1,(0,255,0),3)#画出边框

dst = cv2.bitwise_and(frame,frame,mask=mask)#对每一帧进行位与操作,获取追踪图像的颜色

#cv2.imshow("mask",mask)

#cv2.imshow("dst",dst)

cv2.imshow("frame",frame)

if cv2.waitKey(1)&0xff == 27:

break

cv2.destroyAllWindows()

实现效果:

以上是 OpenCV3.0+Python3.6实现特定颜色的物体追踪 的全部内容, 来源链接: utcz.com/z/312529.html

回到顶部