softmax及python实现过程解析

相对于自适应神经网络、感知器,softmax巧妙低使用简单的方法来实现多分类问题。

  • 功能上,完成从N维向量到M维向量的映射
  • 输出的结果范围是[0, 1],对于一个sample的结果所有输出总和等于1
  • 输出结果,可以隐含地表达该类别的概率

softmax的损失函数是采用了多分类问题中常见的交叉熵,注意经常有2个表达的形式

  • 经典的交叉熵形式:L=-sum(y_right * log(y_pred)), 具体
  • 简单版本是: L = -Log(y_pred),具体

这两个版本在求导过程有点不同,但是结果都是一样的,同时损失表达的意思也是相同的,因为在第一种表达形式中,当y不是

正确分类时,y_right等于0,当y是正确分类时,y_right等于1。

下面基于mnist数据做了一个多分类的实验,整体能达到85%的精度。

'''

softmax classifier for mnist

created on 2019.9.28

author: vince

'''

import math

import logging

import numpy

import random

import matplotlib.pyplot as plt

from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets

from sklearn.metrics import accuracy_score

def loss_max_right_class_prob(predictions, y):

return -predictions[numpy.argmax(y)];

def loss_cross_entropy(predictions, y):

return -numpy.dot(y, numpy.log(predictions));

'''

Softmax classifier

linear classifier

'''

class Softmax:

def __init__(self, iter_num = 100000, batch_size = 1):

self.__iter_num = iter_num;

self.__batch_size = batch_size;

def train(self, train_X, train_Y):

X = numpy.c_[train_X, numpy.ones(train_X.shape[0])];

Y = numpy.copy(train_Y);

self.L = [];

#initialize parameters

self.__weight = numpy.random.rand(X.shape[1], 10) * 2 - 1.0;

self.__step_len = 1e-3;

logging.info("weight:%s" % (self.__weight));

for iter_index in range(self.__iter_num):

if iter_index % 1000 == 0:

logging.info("-----iter:%s-----" % (iter_index));

if iter_index % 100 == 0:

l = 0;

for i in range(0, len(X), 100):

predictions = self.forward_pass(X[i]);

#l += loss_max_right_class_prob(predictions, Y[i]);

l += loss_cross_entropy(predictions, Y[i]);

l /= len(X);

self.L.append(l);

sample_index = random.randint(0, len(X) - 1);

logging.debug("-----select sample %s-----" % (sample_index));

z = numpy.dot(X[sample_index], self.__weight);

z = z - numpy.max(z);

predictions = numpy.exp(z) / numpy.sum(numpy.exp(z));

dw = self.__step_len * X[sample_index].reshape(-1, 1).dot((predictions - Y[sample_index]).reshape(1, -1));

# dw = self.__step_len * X[sample_index].reshape(-1, 1).dot(predictions.reshape(1, -1));

# dw[range(X.shape[1]), numpy.argmax(Y[sample_index])] -= X[sample_index] * self.__step_len;

self.__weight -= dw;

logging.debug("weight:%s" % (self.__weight));

logging.debug("loss:%s" % (l));

logging.info("weight:%s" % (self.__weight));

logging.info("L:%s" % (self.L));

def forward_pass(self, x):

net = numpy.dot(x, self.__weight);

net = net - numpy.max(net);

net = numpy.exp(net) / numpy.sum(numpy.exp(net));

return net;

def predict(self, x):

x = numpy.append(x, 1.0);

return self.forward_pass(x);

def main():

logging.basicConfig(level = logging.INFO,

format = '%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',

datefmt = '%a, %d %b %Y %H:%M:%S');

logging.info("trainning begin.");

mnist = read_data_sets('../data/MNIST',one_hot=True) # MNIST_data指的是存放数据的文件夹路径,one_hot=True 为采用one_hot的编码方式编码标签

#load data

train_X = mnist.train.images #训练集样本

validation_X = mnist.validation.images #验证集样本

test_X = mnist.test.images #测试集样本

#labels

train_Y = mnist.train.labels #训练集标签

validation_Y = mnist.validation.labels #验证集标签

test_Y = mnist.test.labels #测试集标签

classifier = Softmax();

classifier.train(train_X, train_Y);

logging.info("trainning end. predict begin.");

test_predict = numpy.array([]);

test_right = numpy.array([]);

for i in range(len(test_X)):

predict_label = numpy.argmax(classifier.predict(test_X[i]));

test_predict = numpy.append(test_predict, predict_label);

right_label = numpy.argmax(test_Y[i]);

test_right = numpy.append(test_right, right_label);

logging.info("right:%s, predict:%s" % (test_right, test_predict));

score = accuracy_score(test_right, test_predict);

logging.info("The accruacy score is: %s "% (str(score)));

plt.plot(classifier.L)

plt.show();

if __name__ == "__main__":

main();

损失函数收敛情况

Sun, 29 Sep 2019 18:08:08 softmax.py[line:104] INFO trainning end. predict begin.

Sun, 29 Sep 2019 18:08:08 softmax.py[line:114] INFO right:[7. 2. 1. ... 4. 5. 6.], predict:[7. 2. 1. ... 4. 8. 6.]

Sun, 29 Sep 2019 18:08:08 softmax.py[line:116] INFO The accruacy score is: 0.8486

以上是 softmax及python实现过程解析 的全部内容, 来源链接: utcz.com/z/312383.html

回到顶部