使用OpenCV获取图片连通域数量,并用不同颜色标记函

一,原图和效果图

二,代码

//#########################产生随机颜色#########################

cv::Scalar icvprGetRandomColor()

{

uchar r = 255 * (rand() / (1.0 + RAND_MAX));

uchar g = 255 * (rand() / (1.0 + RAND_MAX));

uchar b = 255 * (rand() / (1.0 + RAND_MAX));

return cv::Scalar(b, g, r);

}

//#########################产生随机颜色#########################

//########################种子填充法)#########################

void ConnectedCountBySeedFill(const cv::Mat& _binImg, cv::Mat& _lableImg, int &iConnectedAreaCount)

{

//拓宽1个像素的原因是:如果连通域在边缘,运行此函数会异常崩溃,所以需要在周围加一圈0值,确保连通域不在边上

//==========图像周围拓宽1个像素============================================

int top, bottom; //【添加边界后的图像尺寸】

int leftImage, rightImage;

int borderType = BORDER_CONSTANT; //BORDER_REPLICATE

//【初始化参数】

top = (int)(1); bottom = (int)(1);

leftImage = (int)(1); rightImage = (int)(1);

Mat _binImg2, _binImg3;

_binImg.copyTo(_binImg2);

//初始化参数value

Scalar value(0); //填充值

//创建图像边界

copyMakeBorder(_binImg2, _binImg3, top, bottom, leftImage, rightImage, borderType, value);

//==========图像周围拓宽1个像素============================================

// connected component analysis (4-component)

// use seed filling algorithm

// 1. begin with a foreground pixel and push its foreground neighbors into a stack;

// 2. pop the top pixel on the stack and label it with the same label until the stack is empty

//

// foreground pixel: _binImg(x,y) = 1

// background pixel: _binImg(x,y) = 0

if (_binImg3.empty() ||

_binImg3.type() != CV_8UC1)

{

return;

}

_lableImg.release();

_binImg3.convertTo(_lableImg, CV_32SC1);

int icount = 0;

int label = 1; // start by 2

int rows = _binImg3.rows - 1;

int cols = _binImg3.cols - 1;

for (int i = 1; i < rows - 1; i++)

{

int* data = _lableImg.ptr<int>(i); //取一行数据

for (int j = 1; j < cols - 1; j++)

{

if (data[j] == 1) //像素不为0

{

std::stack<std::pair<int, int>> neighborPixels; //新建一个栈

neighborPixels.push(std::pair<int, int>(i, j)); // 像素坐标: <i,j> ,以该像素为起点,寻找连通域

++label; // 开始一个新标签,各连通域区别的标志

while (!neighborPixels.empty())

{

// 获取堆栈中的顶部像素并使用相同的标签对其进行标记

std::pair<int, int> curPixel = neighborPixels.top();

int curX = curPixel.first;

int curY = curPixel.second;

_lableImg.at<int>(curX, curY) = label; //对图像对应位置的点进行标记

// 弹出顶部像素 (顶部像素出栈)

neighborPixels.pop();

// 加入8邻域点

if (_lableImg.at<int>(curX, curY - 1) == 1)

{// 左点

neighborPixels.push(std::pair<int, int>(curX, curY - 1)); //左边点入栈

}

if (_lableImg.at<int>(curX, curY + 1) == 1)

{// 右点

neighborPixels.push(std::pair<int, int>(curX, curY + 1)); //右边点入栈

}

if (_lableImg.at<int>(curX - 1, curY) == 1)

{// 上点

neighborPixels.push(std::pair<int, int>(curX - 1, curY)); //上边点入栈

}

if (_lableImg.at<int>(curX + 1, curY) == 1)

{// 下点

neighborPixels.push(std::pair<int, int>(curX + 1, curY)); //下边点入栈

}

//===============补充到8连通域======================================================

if (_lableImg.at<int>(curX - 1, curY - 1) == 1)

{// 左上点

neighborPixels.push(std::pair<int, int>(curX - 1, curY - 1)); //左上点入栈

}

if (_lableImg.at<int>(curX - 1, curY + 1) == 1)

{// 右上点

neighborPixels.push(std::pair<int, int>(curX - 1, curY + 1)); //右上点入栈

}

if (_lableImg.at<int>(curX + 1, curY - 1) == 1)

{// 左下点

neighborPixels.push(std::pair<int, int>(curX + 1, curY - 1)); //左下点入栈

}

if (_lableImg.at<int>(curX + 1, curY + 1) == 1)

{// 右下点

neighborPixels.push(std::pair<int, int>(curX + 1, curY + 1)); //右下点入栈

}

//===============补充到8连通域======================================================

}

}

}

}

iConnectedAreaCount = label - 1; //因为label从2开始计数的

int a = 0;

}

###########################################################

//#############添加颜色#####################################

Mat PaintColor(Mat src, int iConnectedAreaCount)

{

int rows = src.rows;

int cols = src.cols;

//cv::Scalar(b, g, r);

std::map<int, cv::Scalar> colors;

for (int n = 1; n <= iConnectedAreaCount + 1; n++)

{

colors[n] = icvprGetRandomColor(); //根据不同标志位产生随机颜色

cv::Scalar color = colors[n];

int a = color[0];

int b = color[1];

int c = color[2];

int d = 0;

}

Mat dst2(rows, cols, CV_8UC3);

dst2 = cv::Scalar::all(0);

for (int i = 0; i < rows; i++)

{

for (int j = 0; j < cols; j++)

{

int value = src.at<int>(i, j);

if (value>1)

{

cv::Scalar color = colors[value];

int a = color[0];

int b = color[1];

int c = color[2];

dst2.at<Vec3b>(i, j)[0] = color[0];

dst2.at<Vec3b>(i, j)[1] = color[1];

dst2.at<Vec3b>(i, j)[2] = color[2];

}

}

}

return dst2;

}

//#############添加颜色##################################

//########调用##########################################

Mat binImage = cv::imread("D:\\sxl\\处理图片\\testImages\\22.jpg", 0);

threshold(binImage, binImage, 50, 1, CV_THRESH_BINARY_INV);

// 连通域标记

Mat labelImg;

int iConnectedAreaCount = 0; //连通域个数

ConnectedCountBySeedFill(binImage, labelImg, iConnectedAreaCount);//针对黑底白字

int a=iConnectedAreaCount;

// 显示结果

Mat dstColor2=PaintColor(labelImg,iConnectedAreaCount);

imshow("colorImg", dstColor2);

Mat grayImg;

labelImg *= 10;

labelImg.convertTo(grayImg, CV_8UC1);

imshow("labelImg", grayImg);

waitKey(0);

//########调用##########################################

补充知识:Opencv快速获取连通域

对于ndarray数据中的连通域查找,opencv提供了接口,非常方便。

import cv2

import numpy as np

img = np.array([

[0, 255, 255, 0, 0, 0, 255, 255,],

[0, 0, 255, 0, 255, 255, 255, 0],

[0, 0, 0, 0, 255, 255, 0, 255],

[255, 255, 0, 0, 0, 0, 0, 0],

[255, 255, 0, 0, 0, 0, 0, 0],

[255, 255, 0, 0, 0, 0, 0, 0]

], dtype=np.uint8)

num, labels = cv2.connectedComponents(img)

labels_dict = {i:[] for i in range(1, num+1)}

height, width = img.shape

for h in range(height):

for w in range(width):

if labels[h][w] in labels_dict:

labels_dict[labels[h][w]].append([h,w])

cv2.connectedComponents()函数返回查找到的连通域个数和对应的label。

上面代码返回连通域个数为4(包含值为0区域,可通过lables过滤), labels结果如图所示:

以上这篇使用OpenCV获取图片连通域数量,并用不同颜色标记函就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 使用OpenCV获取图片连通域数量,并用不同颜色标记函 的全部内容, 来源链接: utcz.com/z/311929.html

回到顶部