是否可以与python pandas进行模糊匹配合并?
我有两个要基于列合并的DataFrame。但是,由于其他拼写方式,空格数量不同,不存在变音符,只要它们彼此相似,我希望能够合并。
任何相似性算法都可以使用(soundex,Levenshtein,difflib)。
假设一个DataFrame具有以下数据:
df1 = DataFrame([[1],[2],[3],[4],[5]], index=['one','two','three','four','five'], columns=['number']) number
one 1
two 2
three 3
four 4
five 5
df2 = DataFrame([['a'],['b'],['c'],['d'],['e']], index=['one','too','three','fours','five'], columns=['letter'])
letter
one a
too b
three c
fours d
five e
然后我想得到结果DataFrame
number letterone 1 a
two 2 b
three 3 c
four 4 d
five 5 e
回答:
类似@locojay
建议,你可以申请difflib
的get_close_matches
到df2的指标,然后应用join
:
In [23]: import difflib In [24]: difflib.get_close_matches
Out[24]: <function difflib.get_close_matches>
In [25]: df2.index = df2.index.map(lambda x: difflib.get_close_matches(x, df1.index)[0])
In [26]: df2
Out[26]:
letter
one a
two b
three c
four d
five e
In [31]: df1.join(df2)
Out[31]:
number letter
one 1 a
two 2 b
three 3 c
four 4 d
five 5 e
如果这些是列,则可以按照相同的方式应用于该列,然后merge:
df1 = DataFrame([[1,'one'],[2,'two'],[3,'three'],[4,'four'],[5,'five']], columns=['number', 'name'])df2 = DataFrame([['a','one'],['b','too'],['c','three'],['d','fours'],['e','five']], columns=['letter', 'name'])
df2['name'] = df2['name'].apply(lambda x: difflib.get_close_matches(x, df1['name'])[0])
df1.merge(df2)
以上是 是否可以与python pandas进行模糊匹配合并? 的全部内容, 来源链接: utcz.com/qa/434822.html