Python-在共享内存中使用numpy数组进行多处理

我想在共享内存中使用一个numpy数组,以便与多处理模块一起使用。困难是像numpy数组一样使用它,而不仅仅是ctypes数组。

from multiprocessing import Process, Array

import scipy

def f(a):

a[0] = -a[0]

if __name__ == '__main__':

# Create the array

N = int(10)

unshared_arr = scipy.rand(N)

arr = Array('d', unshared_arr)

print "Originally, the first two elements of arr = %s"%(arr[:2])

# Create, start, and finish the child processes

p = Process(target=f, args=(arr,))

p.start()

p.join()

# Printing out the changed values

print "Now, the first two elements of arr = %s"%arr[:2]

这将产生如下输出:

Originally, the first two elements of arr = [0.3518653236697369, 0.517794725524976]

Now, the first two elements of arr = [-0.3518653236697369, 0.517794725524976]

可以ctypes方式访问该数组,例如arr[i]说得通。但是,它不是一个numpy数组,因此我无法执行-1*arr,或arr.sum()。我想一个解决方案是将ctypes数组转换为numpy数组。但是(除了无法完成这项工作外),我不相信会再共享它。

对于必须解决的常见问题,似乎将有一个标准解决方案。

回答:

添加到@unutbu(不再可用)和@Henry Gomersall的答案中。你可以shared_arr.get_lock()在需要时使用来同步访问:

shared_arr = mp.Array(ctypes.c_double, N)

# ...

def f(i): # could be anything numpy accepts as an index such another numpy array

with shared_arr.get_lock(): # synchronize access

arr = np.frombuffer(shared_arr.get_obj()) # no data copying

arr[i] = -arr[i]

import ctypes

import logging

import multiprocessing as mp

from contextlib import closing

import numpy as np

info = mp.get_logger().info

def main():

logger = mp.log_to_stderr()

logger.setLevel(logging.INFO)

# create shared array

N, M = 100, 11

shared_arr = mp.Array(ctypes.c_double, N)

arr = tonumpyarray(shared_arr)

# fill with random values

arr[:] = np.random.uniform(size=N)

arr_orig = arr.copy()

# write to arr from different processes

with closing(mp.Pool(initializer=init, initargs=(shared_arr,))) as p:

# many processes access the same slice

stop_f = N // 10

p.map_async(f, [slice(stop_f)]*M)

# many processes access different slices of the same array

assert M % 2 # odd

step = N // 10

p.map_async(g, [slice(i, i + step) for i in range(stop_f, N, step)])

p.join()

assert np.allclose(((-1)**M)*tonumpyarray(shared_arr), arr_orig)

def init(shared_arr_):

global shared_arr

shared_arr = shared_arr_ # must be inherited, not passed as an argument

def tonumpyarray(mp_arr):

return np.frombuffer(mp_arr.get_obj())

def f(i):

"""synchronized."""

with shared_arr.get_lock(): # synchronize access

g(i)

def g(i):

"""no synchronization."""

info("start %s" % (i,))

arr = tonumpyarray(shared_arr)

arr[i] = -1 * arr[i]

info("end %s" % (i,))

if __name__ == '__main__':

mp.freeze_support()

main()

如果不需要同步访问或创建自己的锁,则mp.Array()没有必要。mp.sharedctypes.RawArray在这种情况下,你可以使用。

以上是 Python-在共享内存中使用numpy数组进行多处理 的全部内容, 来源链接: utcz.com/qa/433511.html

回到顶部