元组数

我给了N个数字a [1..N]以及其他2个整数L和H。如何计算满足i <j <k和L <= a [i] +的元组(i,j,k)的数目a [j] + a

[k] <=H。

1 <= T <= 100

1 <= N <= 1000

1 <= L <= H <= 1000000

1 <= a[i] <= 1000000

PS:比N2logn需要更好的解决方案

回答:

由于我的C / C 有点生锈,并且这主要是算法问题,因此我将用伪代码编写(大多数情况下,正确的C / C

带有一些算法,可能需要一段时间才能写出来)。

如果您至少有sizeof(int)* 10 ^ 12字节的可用内存和时间,则可以使用时间复杂度为O(n ^ 2 * log(n))的此算法。

// Sort the N numbers using your favorite, efficient sorting method. (Quicksort, mergesort, etc.) [O(n*log(n))].

int[] b = sort(a)

int[] c = int[length(b)^2];

// Compute the sums of all of the numbers (O(n^2))

for(int i = 0; i < length(b); i++){

for (int j = i; j < length(b); j++){

c[i*length(b)+j] = b[i]+b[j];

}

}

// Sort the sum list (you can do the sorts in-place if you are comfortable) - O(n^2*log(n))

d = sort(c);

// For each number in your list, grab the list of of sums so that L<=num+sum<=H O(n)

// Use binary search to find the lower, upper bounds O(log(n))

// (Total complexity for this part: O(n*log(n))

int total = 0;

for (int i = 0; i < b; i++){

int min_index = binary_search(L-b[i]); // search for largest number <= L-b[i]

int max_index = binary_search(H-b[i]); // search for smallest number >= H-b[i]

total += max_index - min_index + 1; // NOTE: This does not handle edge cases like not finding any sums that work

}

return total;

以上是 元组数 的全部内容, 来源链接: utcz.com/qa/422966.html

回到顶部