Python-用2个索引列表索引2D Numpy数组

我有一个奇怪的情况。

我有一个2D Numpy数组,x:

x = np.random.random_integers(0,5,(20,8))

我有2个索引器-一个索引为行,一个索引为列。为了索引X,我必须执行以下操作:

row_indices = [4,2,18,16,7,19,4]

col_indices = [1,2]

x_rows = x[row_indices,:]

x_indexed = x_rows[:,column_indices]

不仅仅是:

x_new = x[row_indices,column_indices]

(失败:错误,无法通过(2,)广播(20,))

我希望能够使用广播在一行中建立索引,因为这样可以使代码保持干净和可读性…而且,我对幕后的python并不太了解,但是据我了解它,它在一行中应该更快(我将使用相当大的数组)。

测试用例:

x = np.random.random_integers(0,5,(20,8))

row_indices = [4,2,18,16,7,19,4]

col_indices = [1,2]

x_rows = x[row_indices,:]

x_indexed = x_rows[:,col_indices]

x_doesnt_work = x[row_indices,col_indices]

回答:

np.ix_使用索引或布尔数组/掩码进行选择或分配

1.与 indexing-arrays

一个选择

我们可以np.ix_用来获取索引数组的元组,它们可以相互广播以导致索引的高维组合。因此,当该元组用于索引输入数组时,将为我们提供相同的高维数组。因此,要基于两个1D索引数组进行选择,将是-

x_indexed = x[np.ix_(row_indices,col_indices)]

B.作业

我们可以使用相同的符号将标量或可广播数组分配给那些索引位置。因此,以下工作适用于作业-

x[np.ix_(row_indices,col_indices)] = # scalar or broadcastable array

2.用 masks

我们还可以将布尔数组/掩码与一起使用np.ix_,类似于如何使用索引数组。可以再次使用它来选择输入数组中的一个块,也可以对其进行分配。

一个选择

因此,使用row_mask和col_mask布尔数组分别作为行和列选择的掩码,我们可以使用以下内容进行选择-

x[np.ix_(row_mask,col_mask)]

B.作业

以下是作业的作品

x[np.ix_(row_mask,col_mask)] = # scalar or broadcastable array

  1. np.ix_与indexing-arrays

输入数组和索引数组

In [221]: x

Out[221]:

array([[17, 39, 88, 14, 73, 58, 17, 78],

[88, 92, 46, 67, 44, 81, 17, 67],

[31, 70, 47, 90, 52, 15, 24, 22],

[19, 59, 98, 19, 52, 95, 88, 65],

[85, 76, 56, 72, 43, 79, 53, 37],

[74, 46, 95, 27, 81, 97, 93, 69],

[49, 46, 12, 83, 15, 63, 20, 79]])

In [222]: row_indices

Out[222]: [4, 2, 5, 4, 1]

In [223]: col_indices

Out[223]: [1, 2]

具有np.ix_- 的索引数组的元组

In [224]: np.ix_(row_indices,col_indices) # Broadcasting of indices

Out[224]:

(array([[4],

[2],

[5],

[4],

[1]]), array([[1, 2]]))

进行选择

In [225]: x[np.ix_(row_indices,col_indices)]

Out[225]:

array([[76, 56],

[70, 47],

[46, 95],

[76, 56],

[92, 46]])

如OP所建议的,这实际上与执行2D数组版本的老式广播相同,该数组的2D数组row_indices将其元素/索引发送到axis=0,从而在处创建单例维度,axis=1从而允许使用进行广播col_indices。因此,我们将有一个类似的替代解决方案-

In [227]: x[np.asarray(row_indices)[:,None],col_indices]

Out[227]:

array([[76, 56],

[70, 47],

[46, 95],

[76, 56],

[92, 46]])

如前所述,对于作业,我们只是这样做。

行,列索引数组

In [36]: row_indices = [1, 4]

In [37]: col_indices = [1, 3]

使用标量进行分配

In [38]: x[np.ix_(row_indices,col_indices)] = -1

In [39]: x

Out[39]:

array([[17, 39, 88, 14, 73, 58, 17, 78],

[88, -1, 46, -1, 44, 81, 17, 67],

[31, 70, 47, 90, 52, 15, 24, 22],

[19, 59, 98, 19, 52, 95, 88, 65],

[85, -1, 56, -1, 43, 79, 53, 37],

[74, 46, 95, 27, 81, 97, 93, 69],

[49, 46, 12, 83, 15, 63, 20, 79]])

使用2D块(可广播数组)进行分配

In [40]: rand_arr = -np.arange(4).reshape(2,2)

In [41]: x[np.ix_(row_indices,col_indices)] = rand_arr

In [42]: x

Out[42]:

array([[17, 39, 88, 14, 73, 58, 17, 78],

[88, 0, 46, -1, 44, 81, 17, 67],

[31, 70, 47, 90, 52, 15, 24, 22],

[19, 59, 98, 19, 52, 95, 88, 65],

[85, -2, 56, -3, 43, 79, 53, 37],

[74, 46, 95, 27, 81, 97, 93, 69],

[49, 46, 12, 83, 15, 63, 20, 79]]

  1. np.ix_masks

输入数组

In [19]: x

Out[19]:

array([[17, 39, 88, 14, 73, 58, 17, 78],

[88, 92, 46, 67, 44, 81, 17, 67],

[31, 70, 47, 90, 52, 15, 24, 22],

[19, 59, 98, 19, 52, 95, 88, 65],

[85, 76, 56, 72, 43, 79, 53, 37],

[74, 46, 95, 27, 81, 97, 93, 69],

[49, 46, 12, 83, 15, 63, 20, 79]])

输入行,列掩码

In [20]: row_mask = np.array([0,1,1,0,0,1,0],dtype=bool)

In [21]: col_mask = np.array([1,0,1,0,1,1,0,0],dtype=bool)

进行选择

In [22]: x[np.ix_(row_mask,col_mask)]

Out[22]:

array([[88, 46, 44, 81],

[31, 47, 52, 15],

[74, 95, 81, 97]])

使用标量进行分配

In [23]: x[np.ix_(row_mask,col_mask)] = -1

In [24]: x

Out[24]:

array([[17, 39, 88, 14, 73, 58, 17, 78],

[-1, 92, -1, 67, -1, -1, 17, 67],

[-1, 70, -1, 90, -1, -1, 24, 22],

[19, 59, 98, 19, 52, 95, 88, 65],

[85, 76, 56, 72, 43, 79, 53, 37],

[-1, 46, -1, 27, -1, -1, 93, 69],

[49, 46, 12, 83, 15, 63, 20, 79]])

使用2D块(可广播数组)进行分配

In [25]: rand_arr = -np.arange(12).reshape(3,4)

In [26]: x[np.ix_(row_mask,col_mask)] = rand_arr

In [27]: x

Out[27]:

array([[ 17, 39, 88, 14, 73, 58, 17, 78],

[ 0, 92, -1, 67, -2, -3, 17, 67],

[ -4, 70, -5, 90, -6, -7, 24, 22],

[ 19, 59, 98, 19, 52, 95, 88, 65],

[ 85, 76, 56, 72, 43, 79, 53, 37],

[ -8, 46, -9, 27, -10, -11, 93, 69],

[ 49, 46, 12, 83, 15, 63, 20, 79]])

以上是 Python-用2个索引列表索引2D Numpy数组 的全部内容, 来源链接: utcz.com/qa/406577.html

回到顶部