通过参考类似的列名将多列与Tidyr的联合使用
library(tidyr) library(dplyr)
library(tidyverse)
下面是简单数据框的代码。我有一些混乱的数据,导出的列因子类别分布在不同的列中。通过参考类似的列名将多列与Tidyr的联合使用
Client<-c("Client1","Client2","Client3","Client4","Client5") Sex_M<-c("Male","NA","Male","NA","Male")
Sex_F<-c(" ","Female"," ","Female"," ")
Satisfaction_Satisfied<-c("Satisfied"," "," ","Satisfied","Satisfied")
Satisfaction_VerySatisfied<-c(" ","VerySatisfied","VerySatisfied"," "," ")
CommunicationType_Email<-c("Email"," "," ","Email","Email")
CommunicationType_Phone<-c(" ","Phone ","Phone "," "," ")
DF<-data_frame(Client,Sex_M,Sex_F,Satisfaction_Satisfied,Satisfaction_VerySatisfied,CommunicationType_Email,CommunicationType_Phone)
我想用tidyr的“团结”将这些类别重新组合成单列。
DF<-DF%>%unite(Sat,Satisfaction_Satisfied,Satisfaction_VerySatisfied,sep=" ")%>% unite(Sex,Sex_M,Sex_F,sep=" ")
不过,我必须写多个“团结”行,我觉得这违反了三次规则,所以必须有一种方法,使这更容易,尤其是因为我真正的数据包含几十个需要列合并。是否有一种方法可以使用“统一”一次,但不知何故指的是匹配列名,以便所有相似的列名(例如,包含“Sex”为“Sex_M”和“Sex_F”,以及“CommunicationType”为“CommunicationType_Email”和“CommunicationType_Phone”)与上面的公式结合?
我也在想一个允许我输入列名的函数,但这对我来说太难了,因为它涉及复杂的标准评估。
回答:
我们可以使用unite
library(tidyverse) DF %>%
unite(Sat, matches("^Sat"))
对于多个的情况下,也许
gather(DF, Var, Val, -Client, na.rm = TRUE) %>% separate(Var, into = c("Var1", "Var2")) %>%
group_by(Client, Var1) %>%
summarise(Val = paste(Val[!(is.na(Val)|Val=="")], collapse="_")) %>%
spread(Var1, Val)
# Client CommunicationType Satisfaction Sex
#* <chr> <chr> <chr> <chr>
#1 Client1 Email Satisfied Male
#2 Client2 Phone VerySatisfied Female
#3 Client3 Phone VerySatisfied Male
#4 Client4 Email Satisfied Female
#5 Client5 Email Satisfied Male
回答:
是这样的吗?如果你有很多列。
result<-with(new.env(),{ Client<-c("Client1","Client2","Client3","Client4","Client5")
Sex_M<-c("Male","NA","Male","NA","Male")
Sex_F<-c(" ","Female"," ","Female"," ")
Satisfaction_Satisfied<-c("Satisfied"," "," ","Satisfied","Satisfied")
Satisfaction_VerySatisfied<-c(" ","VerySatisfied","VerySatisfied"," "," ")
CommunicationType_Email<-c("Email"," "," ","Email","Email")
CommunicationType_Phone<-c(" ","Phone ","Phone "," "," ")
x<-ls()
categories<-unique(sub("(.*)_(.*)", "\\1", x))
df<-setNames(data.frame(lapply(x, function(y) get(y))), x)
for(nm in categories){
df<-unite_(df, nm, x[contains(vars = x, match = nm)])
}
return(df)
})
Client CommunicationType Satisfaction Sex
1 Client1 Email_ Satisfied_ _Male
2 Client2 _Phone _VerySatisfied Female_NA
3 Client3 _Phone _VerySatisfied _Male
4 Client4 Email_ Satisfied_ Female_NA
5 Client5 Email_ Satisfied_ _Male
以上是 通过参考类似的列名将多列与Tidyr的联合使用 的全部内容, 来源链接: utcz.com/qa/259976.html