OpenCV的抗扭斜的轮廓

inputImage的OpenCV的抗扭斜的轮廓

ResultImage

我已经能够过滤最大的轮廓图像中检测令牌。

我已经应用了经纱知觉,但它只是在轮廓的边缘裁剪图像,没有别的。

我想要将检测到的令牌从图像的其余部分中裁剪出来,在保持比例的情况下对其进行去偏斜,以便结果图像应该直立,笔直。然后,我将继续寻找令牌中的斑点来检测其中标记的日期。

private Mat processMat(Mat srcMat) { 

Mat processedMat = new Mat();

Imgproc.cvtColor(srcMat, processedMat, Imgproc.COLOR_BGR2GRAY);

Imgproc.GaussianBlur(processedMat, processedMat, new Size(5, 5), 5);

Imgproc.threshold(processedMat, processedMat, 127, 255, Imgproc.THRESH_BINARY);

List<MatOfPoint> contours = new ArrayList<>();

Mat hierarchy = new Mat();

Imgproc.findContours(processedMat, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);

double maxVal = 0;

int maxValIdx = 0;

for (int contourIdx = 0; contourIdx < contours.size(); contourIdx++) {

double contourArea = Imgproc.contourArea(contours.get(contourIdx));

if (maxVal < contourArea) {

maxVal = contourArea;

maxValIdx = contourIdx;

}

}

if (!contours.isEmpty()) {

Imgproc.drawContours(srcMat, contours, maxValIdx, new Scalar(0,255,0), 3);

Rect rect = Imgproc.boundingRect(contours.get(maxValIdx));

Log.e("rect", "" + rect);

int top = srcMat.height();

int left = srcMat.width();

int right = 0;

int bottom = 0;

if(rect.x < left) {

left = rect.x;

}

if(rect.x+rect.width > right){

right = rect.x+rect.width;

}

if(rect.y < top){

top = rect.y;

}

if(rect.y+rect.height > bottom){

bottom = rect.y+rect.height;

}

Point topLeft = new Point(left, top);

Point topRight = new Point(right, top);

Point bottomRight = new Point(right, bottom);

Point bottomLeft = new Point(left, bottom);

return warp(srcMat, topLeft, topRight, bottomLeft, bottomRight);

}

return null;

}

Mat warp(Mat inputMat, Point topLeft, Point topRight, Point bottomLeft, Point bottomRight) {

int resultWidth = (int)(topRight.x - topLeft.x);

int bottomWidth = (int)(bottomRight.x - bottomLeft.x);

if(bottomWidth > resultWidth)

resultWidth = bottomWidth;

int resultHeight = (int)(bottomLeft.y - topLeft.y);

int bottomHeight = (int)(bottomRight.y - topRight.y);

if (bottomHeight > resultHeight) {

resultHeight = bottomHeight;

}

Mat outputMat = new Mat(resultWidth, resultHeight, CvType.CV_8UC1);

List<Point> source = new ArrayList<>();

source.add(topLeft);

source.add(topRight);

source.add(bottomLeft);

source.add(bottomRight);

Mat startM = Converters.vector_Point2f_to_Mat(source);

Point ocvPOut1 = new Point(0, 0);

Point ocvPOut2 = new Point(resultWidth, 0);

Point ocvPOut3 = new Point(0, resultHeight);

Point ocvPOut4 = new Point(resultWidth, resultHeight);

List<Point> dest = new ArrayList<>();

dest.add(ocvPOut1);

dest.add(ocvPOut2);

dest.add(ocvPOut3);

dest.add(ocvPOut4);

Mat endM = Converters.vector_Point2f_to_Mat(dest);

Mat perspectiveTransform = Imgproc.getPerspectiveTransform(startM, endM);

Imgproc.warpPerspective(inputMat, outputMat, perspectiveTransform, new Size(resultWidth, resultHeight));

return outputMat;

}

更新1

替换此:

 return warp(srcMat, topLeft, topRight, bottomLeft, bottomRight); 

这一点:

 return warp(srcMat, topLeft, topRight, bottomRight, bottomLeft); 

结果更新1:

更新2

public Mat warp(Mat inputMat, MatOfPoint selectedContour) { 

MatOfPoint2f new_mat = new MatOfPoint2f(selectedContour.toArray());

MatOfPoint2f approxCurve_temp = new MatOfPoint2f();

int contourSize = (int) selectedContour.total();

Imgproc.approxPolyDP(new_mat, approxCurve_temp, contourSize * 0.05, true);

double[] temp_double;

temp_double = approxCurve_temp.get(0,0);

Point p1 = new Point(temp_double[0], temp_double[1]);

temp_double = approxCurve_temp.get(1,0);

Point p2 = new Point(temp_double[0], temp_double[1]);

temp_double = approxCurve_temp.get(2,0);

Point p3 = new Point(temp_double[0], temp_double[1]);

temp_double = approxCurve_temp.get(3,0);

Point p4 = new Point(temp_double[0], temp_double[1]);

List<Point> source = new ArrayList<Point>();

source.add(p1);

source.add(p2);

source.add(p3);

source.add(p4);

Mat startM = Converters.vector_Point2f_to_Mat(source);

int resultWidth = 846;

int resultHeight = 2048;

Mat outputMat = new Mat(resultWidth, resultHeight, CvType.CV_8UC4);

Point ocvPOut1 = new Point(0, 0);

Point ocvPOut2 = new Point(0, resultHeight);

Point ocvPOut3 = new Point(resultWidth, resultHeight);

Point ocvPOut4 = new Point(resultWidth, 0);

List<Point> dest = new ArrayList<Point>();

dest.add(ocvPOut1);

dest.add(ocvPOut2);

dest.add(ocvPOut3);

dest.add(ocvPOut4);

Mat endM = Converters.vector_Point2f_to_Mat(dest);

Mat perspectiveTransform = Imgproc.getPerspectiveTransform(startM, endM);

Imgproc.warpPerspective(inputMat, outputMat, perspectiveTransform, new Size(resultWidth, resultHeight),

Imgproc.INTER_CUBIC);

return outputMat;

}

结果更新2:

我已经改变了我的经功能的位和代码附加。 然而,合成图像以某种方式在错误的方向上旋转。你能指导我这是做这件事的正确方法吗?

Android设备方向设置为:纵向,输入图像也是纵向。

更新3

我设法通过排序的角落,像这样伸直令牌:

List<Point> source = new ArrayList<Point>(); 

source.add(p2);

source.add(p3);

source.add(p4);

source.add(p1);

Mat startM = Converters.vector_Point2f_to_Mat(source);

结果更新3:

然而,由此产生的图像从左侧裁剪,我不知道如何解决这个问题。 如果令牌向右或向左倾斜并且输出图像是笔直的,我已设法拉直输入图像。但是,如果输入图像已经将令牌居中且直线向上。它旋转像这样的令牌,使用相同的代码:

问题更新3:

回答:

到纠偏票转型是接近仿射之一。您可以通过用平行四边形近似轮廓来获得它。您可以将平行四边形的顶点作为最左边,最顶端,最右边和最底部的点。其实,你只需要三个顶点(第四个可以从这些顶点重新计算)。也许平行四边形的最小二乘拟合是可能的,我不知道。

另一种选择是考虑从四个点定义的单应变换(但计算更复杂)。它将考虑到视角。 (您可能会在这里获得一些见解:https://www.codeproject.com/Articles/674433/Perspective-Projection-of-a-Rectangle-Homography。)

要整理图像,只需应用逆变换并检索矩形即可。无论如何,你会注意到这个矩形的大小是未知的,所以你可以任意缩放它。最难的问题是找到合适的宽高比。

以上是 OpenCV的抗扭斜的轮廓 的全部内容, 来源链接: utcz.com/qa/257750.html

回到顶部