UserWarning: findfont: Font family ['sans-serif'] not found.错误?

 UserWarning: findfont: Font family ['sans-serif'] not found.错误?

题目描述

这个怎么弄?按照网上改了改一个mat里面的文本,还是在报错

题目来源及自己的思路

ID3决策树

相关代码

import numpy as np

import pandas as pd

from utils.plotDecisionTree import *

from sklearn.metrics import accuracy_score

import time

#计算经验熵

def calcEntropy(dataSet):

mD = len(dataSet) # mD表示数据集的数据向量个数

dataLabelList = [x[-1] for x in dataSet] # 数据集最后一列 标签

dataLabelSet = set(dataLabelList) # 转化为标签集合,集合不重复,所以转化

ent = 0

for label in dataLabelSet: # 对于集合中的每一个标签

mDv = dataLabelList.count(label) # 统计它出现的次数

prop = float(mDv) / mD # 计算频率

ent = ent - prop * np.math.log(prop, 2) # 计算条件熵,见算法预备知识

return ent

#计算条件熵

def calcCondEntropy(dataSet,featureSet,i):

mD = len(dataSet)

ent=0

for feature in featureSet:

# 拆分数据集,去除第i行数据特征

splitedDataSet = splitDataSet(dataSet, i, feature)

mDv = len(splitedDataSet)

# 计算条件熵

ent = ent + float(mDv) / mD * calcEntropy(splitedDataSet)

return ent

# 拆分数据集

# index 要拆分的特征的下标

# feature 要拆分的特征

# 返回值 dataSet中index所在特征为feature,且去掉index一列的集合

def splitDataSet(dataSet, index, feature):

splitedDataSet = []

mD = len(dataSet)

for data in dataSet:

if(data[index] == feature): # 将数据集拆分

sliceTmp = data[:index] # 取[0,index)

sliceTmp.extend(data[index + 1:]) # 扩展(index,len]

splitedDataSet.append(sliceTmp)

return splitedDataSet

# 根据信息增益 - 选择最好的特征

# 返回值 - 最好的特征的下标

def chooseBestFeature(dataSet):

entD = calcEntropy(dataSet) # 计算经验熵

mD = len(dataSet)

featureNumber = len(dataSet[0]) - 1

maxGain = -100 # 最大增益

maxIndex = -1 # 最大增益的下标

Gain=0

for i in range(featureNumber):

featureI = [x[i] for x in dataSet] # 数据集合中的第i列特征

featureSet = set(featureI) # 特征集合

Gain = entD - calcCondEntropy(dataSet,featureSet,i) # 计算信息增益

if(maxIndex == -1):

maxGain = Gain

maxIndex = i

elif(maxGain < Gain): # 记录最大的信息增益和下标

maxGain = Gain

maxIndex = i

return maxIndex # 返回下标

# 寻找最多的,作为标签

def mainLabel(labelList):

labelRec = labelList[0]

maxLabelCount = -1

labelSet = set(labelList)

for label in labelSet:

if(labelList.count(label) > maxLabelCount):

maxLabelCount = labelList.count(label)

labelRec = label

return labelRec

# 生成决策树,注意,是列表的形式存储

# dataSet:数据集, featureNames:数据属性类别, featureNamesSet:属性类别集合, labelListParent:父节点标签列表

def createFullDecisionTree(dataSet, featureNames, featureNamesSet, labelListParent):

labelList = [x[-1] for x in dataSet]

if(len(dataSet) == 0): # 如果数据集为空,返回父节点标签列表的主要标签

return mainLabel(labelListParent)

elif(len(dataSet[0]) == 1): # 没有可划分的属性,选出最多的label作为该数据集的标签

return mainLabel(labelList)

elif(labelList.count(labelList[0]) == len(labelList)): # 全部都属于同一个Label,返回labList[0]

return labelList[0]

# 不满足上面的边界情况则需要创建新的分支节点

bestFeatureIndex = chooseBestFeature(dataSet) # 根据信息增益,选择数据集中最好的特征下标

bestFeatureName = featureNames.pop(bestFeatureIndex) # 取出属性类别

myTree = {bestFeatureName: {}} # 新建节点,一个字典

featureList = featureNamesSet.pop(bestFeatureIndex) # 取出最佳属性的类别

featureSet = set(featureList) # 剔除属性类别集合

for feature in featureSet: # 遍历最佳属性所有取值

featureNamesNext = featureNames[:]

featureNamesSetNext = featureNamesSet[:][:]

splitedDataSet = splitDataSet(dataSet, bestFeatureIndex, feature) # 剔除最佳特征

# 递归地生成新的节点

# featureNames:数据属性类别, featureNamesSet:属性类别集合, labelListParent:父节点标签列表

# 一个二叉树

myTree[bestFeatureName][feature] = createFullDecisionTree(splitedDataSet, featureNamesNext, featureNamesSetNext, labelList)

return myTree

# 读取数据集

def readDataSet(path):

ifile = open(path, encoding='utf-8_sig', errors='ignore')

#表头

featureName = ifile.readline()

featureName = featureName.rstrip("\n")

#类别,属性

featureNames = (featureName.split(' ')[0]).split(',')

#读取文件

lines = ifile.readlines()

#数据集

dataSet = []

for line in lines:

tmp = line.split('\n')[0]

tmp = tmp.split(',')

dataSet.append(tmp)

#获取标签

labelList = [x[-1] for x in dataSet]

#获取featureNamesSet

featureNamesSet = []

for i in range(len(dataSet[0]) - 1):

col = [x[i] for x in dataSet]

colSet = set(col)

featureNamesSet.append(list(colSet))

#返回 数据集,属性名,所有属性的取值集合,以及标签列表

return dataSet, featureNames, featureNamesSet,labelList

def tree_predict(tree, data):

#print(data)

feature = list(tree.keys())[0] #取树第一个结点的键(特征)

#print(feature)

label = data[feature] #该特征下的属性

next_tree = tree[feature][label] #取下一个结点树

if type(next_tree) == str: #如果是个字符串,说明已经到达叶节点返回分类结果

return next_tree

else: # 否则继续如上处理

return tree_predict(next_tree, data)

def main():

#获取训练集,所有属性名称,每个属性的类别,所有标签(最后一列)

dataTrain, featureNames, featureNamesSet,labelList = readDataSet("D:\MachineLearning-master\lab4\data\ex3dataEn.csv")

print("dataTrain: \n",dataTrain,"featureNames:\n",featureNames,"featureNamesSet:\n",featureNamesSet,"labelList:\n",labelList)

#获取测试集

train= pd.read_csv("D:\MachineLearning-master\lab4\data\ex3dataEn.csv")

test = pd.read_csv("D:\MachineLearning-master\lab4\data\ex3dataEn.csv")

print("train:\n",train[:10])

print("test:\n",test[:10])

#生成决策树

t0 = time.time()

tree=createFullDecisionTree(dataTrain, featureNames,featureNamesSet,labelList)

t1 = time.time()

print("ID3算法生成决策树的时间开销:",(t1 - t0)*(10**6),"us")

createPlot(tree,r"D:\MachineLearning-master\lab4\fig\ID3.jpg")

predictTrain = train.apply(lambda x: tree_predict(tree, x), axis=1)

label_list = train.iloc[:, -1]

score = accuracy_score(label_list, predictTrain)

print('训练补全分支准确率为:' + repr(score * 100) + '%')

#预测

y_predict = test.apply(lambda x: tree_predict(tree, x), axis=1)

label_list = test.iloc[:, -1]

score = accuracy_score(label_list, y_predict)

print('测试集补全分支准确率为:' + repr(score * 100) + '%')

if __name__ == "__main__":

main()

你期待的结果是什么?实际看到的错误信息又是什么?

C:\Users\Faker\Anaconda3\python.exe C:/Users/Faker/PycharmProjects/pythonProject/main.py

dataTrain:

[['bad', 'true', 'true', 'high'], ['bad', 'true', 'true', 'high'], ['bad', 'false', 'true', 'high'], ['bad', 'true', 'true', 'high'], ['bad', 'false', 'true', 'high'], ['bad', 'true', 'false', 'high'], ['good', 'true', 'true', 'high'], ['good', 'true', 'false', 'high'], ['good', 'true', 'true', 'high'], ['good', 'true', 'true', 'high'], ['good', 'true', 'true', 'high'], ['good', 'true', 'true', 'high'], ['bad', 'true', 'true', 'low'], ['good', 'false', 'true', 'high'], ['good', 'false', 'true', 'high'], ['good', 'false', 'true', 'high'], ['good', 'false', 'true', 'high'], ['good', 'false', 'false', 'high'], ['bad', 'false', 'false', 'low'], ['bad', 'false', 'true', 'low'], ['bad', 'false', 'true', 'low'], ['bad', 'false', 'true', 'low'], ['bad', 'false', 'false', 'low'], ['bad', 'true', 'false', 'low'], ['good', 'false', 'true', 'low'], ['good', 'false', 'true', 'low'], ['bad', 'false', 'false', 'low'], ['bad', 'false', 'false', 'low'], ['good', 'false', 'false', 'low'], ['bad', 'true', 'false', 'low'], ['good', 'false', 'true', 'low'], ['good', 'false', 'false', 'low'], ['good', 'false', 'false', 'low']] featureNames:

['bad', 'true', 'true', 'high'] featureNamesSet:

[['bad', 'good'], ['true', 'false'], ['true', 'false']] labelList:

['high', 'high', 'high', 'high', 'high', 'high', 'high', 'high', 'high', 'high', 'high', 'high', 'low', 'high', 'high', 'high', 'high', 'high', 'low', 'low', 'low', 'low', 'low', 'low', 'low', 'low', 'low', 'low', 'low', 'low', 'low', 'low', 'low']

train:

bad true true.1 high

0 bad True True high

1 bad True True high

2 bad False True high

3 bad True True high

4 bad False True high

5 bad True False high

6 good True True high

7 good True False high

8 good True True high

9 good True True high

test:

bad true true.1 high

0 bad True True high

1 bad True True high

2 bad False True high

3 bad True True high

4 bad False True high

5 bad True False high

6 good True True high

7 good True False high

8 good True True high

9 good True True high

ID3算法生成决策树的时间开销: 0.0 us

C:\Users\Faker\Anaconda3\lib\site-packages\matplotlib\font_manager.py:1331: UserWarning: findfont: Font family ['sans-serif'] not found. Falling back to DejaVu Sans

(prop.get_family(), self.defaultFamily[fontext]))

Traceback (most recent call last):

File "C:/Users/Faker/PycharmProjects/pythonProject/main.py", line 176, in <module>

main()

File "C:/Users/Faker/PycharmProjects/pythonProject/main.py", line 164, in main

predictTrain = train.apply(lambda x: tree_predict(tree, x), axis=1)

File "C:\Users\Faker\Anaconda3\lib\site-packages\pandas\core\frame.py", line 6014, in apply

return op.get_result()

File "C:\Users\Faker\Anaconda3\lib\site-packages\pandas\core\apply.py", line 142, in get_result

return self.apply_standard()

File "C:\Users\Faker\Anaconda3\lib\site-packages\pandas\core\apply.py", line 248, in apply_standard

self.apply_series_generator()

File "C:\Users\Faker\Anaconda3\lib\site-packages\pandas\core\apply.py", line 277, in apply_series_generator

results[i] = self.f(v)

File "C:/Users/Faker/PycharmProjects/pythonProject/main.py", line 164, in <lambda>

predictTrain = train.apply(lambda x: tree_predict(tree, x), axis=1)

File "C:/Users/Faker/PycharmProjects/pythonProject/main.py", line 140, in tree_predict

next_tree = tree[feature][label] #取下一个结点树

KeyError: (True, 'occurred at index 0')

Process finished with exit code 1


回答:

看你标题是找不到字体的错误,请下载该字体并解决。

看你代码是键错误,可以尝试使用静态的键来调试错误,或进入debug查看当时的键值表。

以上是 UserWarning: findfont: Font family [&#x27;sans-serif&#x27;] not found.错误? 的全部内容, 来源链接: utcz.com/p/937947.html

回到顶部