spring boot与kafka集成的简单实例

本文介绍了spring boot与kafka集成的简单实例,分享给大家,具体如下:

引入相关依赖

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter</artifactId>

</dependency>

<dependency>

<groupId>org.springframework.kafka</groupId>

<artifactId>spring-kafka</artifactId>

<version>1.1.1.RELEASE</version>

</dependency>

从依赖项的引入即可看出,当前spring boot(1.4.2)还不支持完全以配置项的配置来实现与kafka的无缝集成。也就意味着必须通过java config的方式进行手工配置。

定义kafka基础配置

与redisTemplate及jdbcTemplate等类似。spring同样提供了org.springframework.kafka.core.KafkaTemplate作为kafka相关api操作的入口。

import java.util.HashMap;

import java.util.Map;

import org.apache.kafka.clients.producer.ProducerConfig;

import org.apache.kafka.common.serialization.StringSerializer;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.kafka.annotation.EnableKafka;

import org.springframework.kafka.core.DefaultKafkaProducerFactory;

import org.springframework.kafka.core.KafkaTemplate;

import org.springframework.kafka.core.ProducerFactory;

@Configuration

@EnableKafka

public class KafkaProducerConfig {

public Map<String, Object> producerConfigs() {

Map<String, Object> props = new HashMap<>();

props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.179.200:9092");

props.put(ProducerConfig.RETRIES_CONFIG, 0);

props.put(ProducerConfig.BATCH_SIZE_CONFIG, 4096);

props.put(ProducerConfig.LINGER_MS_CONFIG, 1);

props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 40960);

props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);

props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);

return props;

}

public ProducerFactory<String, String> producerFactory() {

return new DefaultKafkaProducerFactory<>(producerConfigs());

}

@Bean

public KafkaTemplate<String, String> kafkaTemplate() {

return new KafkaTemplate<String, String>(producerFactory());

}

}

KafkaTemplate依赖于ProducerFactory,而创建ProducerFactory时则通过一个Map指定kafka相关配置参数。通过KafkaTemplate对象即可实现消息发送。

kafkaTemplate.send("test-topic", "hello");

or

kafkaTemplate.send("test-topic", "key-1", "hello");

监听消息配置

import org.apache.kafka.clients.consumer.ConsumerConfig;

import org.apache.kafka.common.serialization.StringDeserializer;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.kafka.annotation.EnableKafka;

import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;

import org.springframework.kafka.config.KafkaListenerContainerFactory;

import org.springframework.kafka.core.ConsumerFactory;

import org.springframework.kafka.core.DefaultKafkaConsumerFactory;

import org.springframework.kafka.listener.ConcurrentMessageListenerContainer;

import java.util.HashMap;

import java.util.Map;

@Configuration

@EnableKafka

public class KafkaConsumerConfig {

@Bean

public KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<String, String>> kafkaListenerContainerFactory() {

ConcurrentKafkaListenerContainerFactory<String, String> factory = new ConcurrentKafkaListenerContainerFactory<>();

factory.setConsumerFactory(consumerFactory());

factory.setConcurrency(3);

factory.getContainerProperties().setPollTimeout(3000);

return factory;

}

public ConsumerFactory<String, String> consumerFactory() {

return new DefaultKafkaConsumerFactory<>(consumerConfigs());

}

public Map<String, Object> consumerConfigs() {

Map<String, Object> propsMap = new HashMap<>();

propsMap.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.179.200:9092");

propsMap.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false);

propsMap.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "100");

propsMap.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "15000");

propsMap.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);

propsMap.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);

propsMap.put(ConsumerConfig.GROUP_ID_CONFIG, "test-group");

propsMap.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest");

return propsMap;

}

@Bean

public Listener listener() {

return new Listener();

}

}

实现消息监听的最终目标是得到监听器对象。该监听器对象自行实现。

import org.apache.kafka.clients.consumer.ConsumerRecord;

import org.springframework.kafka.annotation.KafkaListener;

import java.util.Optional;

public class Listener {

@KafkaListener(topics = {"test-topic"})

public void listen(ConsumerRecord<?, ?> record) {

Optional<?> kafkaMessage = Optional.ofNullable(record.value());

if (kafkaMessage.isPresent()) {

Object message = kafkaMessage.get();

System.out.println("listen1 " + message);

}

}

}

只需用@KafkaListener指定哪个方法处理消息即可。同时指定该方法用于监听kafka中哪些topic。

注意事项

定义监听消息配置时,GROUP_ID_CONFIG配置项的值用于指定消费者组的名称,如果同组中存在多个监听器对象则只有一个监听器对象能收到消息。

@KafkaListener中topics属性用于指定kafka topic名称,topic名称由消息生产者指定,也就是由kafkaTemplate在发送消息时指定。

KEY_DESERIALIZER_CLASS_CONFIG与VALUE_DESERIALIZER_CLASS_CONFIG指定key和value的编码、解码策略。kafka用key值确定value存放在哪个分区中。

后记

时间是解决问题的有效手段之一。

在spring boot 1.5版本中即可实现spring boot与kafka Auto-configuration

以上是 spring boot与kafka集成的简单实例 的全部内容, 来源链接: utcz.com/p/214743.html

回到顶部