初识Java8中的Stream
1.初识stream
先来一个总纲:
东西就是这么多啦,stream是java8中加入的一个非常实用的功能,最初看时以为是io中的流(其实一点关系都没有),让我们先来看一个小例子感受一下:
@Beforepublic void init() {
random = new Random();
stuList = new ArrayList<Student>() {
{
for (int i = 0; i < 100; i++) {
add(new Student("student" + i, random.nextInt(50) + 50));
}
}
};
}
public class Student {
private String name;
private Integer score;
//-----getters and setters-----
}
//1列出班上超过85分的学生姓名,并按照分数降序输出用户名字
@Test
public void test1() {
List<String> studentList = stuList.stream()
.filter(x->x.getScore()>85)
.sorted(Comparator.comparing(Student::getScore).reversed())
.map(Student::getName)
.collect(Collectors.toList());
System.out.println(studentList);
}
列出班上分数超过85分的学生姓名,并按照分数降序输出用户名字,在java8之前我们需要三个步骤:
1)新建一个List<Student> newList,在for循环中遍历stuList,将分数超过85分的学生装入新的集合中
2)对于新的集合newList进行排序操作
3)遍历打印newList
这三个步骤在java8中只需要两条语句,如果紧紧需要打印,不需要保存新生产list的话实际上只需要一条,是不是非常方便。
2.stream的特性
我们首先列出stream的如下三点特性,在之后我们会对照着详细说明
1.stream不存储数据
2.stream不改变源数据
3.stream的延迟执行特性
通常我们在数组或集合的基础上创建stream,stream不会专门存储数据,对stream的操作也不会影响到创建它的数组和集合,对于stream的聚合、消费或收集操作只能进行一次,再次操作会报错,如下代码:
@Testpublic void test1(){
Stream<String> stream = Stream.generate(()->"user").limit(20);
stream.forEach(System.out::println);
stream.forEach(System.out::println);
}
程序在正常完成一次打印工作后报错。
stream的操作是延迟执行的,在列出班上超过85分的学生姓名例子中,在collect方法执行之前,filter、sorted、map方法还未执行,只有当collect方法执行时才会触发之前转换操作
看如下代码:
public boolean filter(Student s) {System.out.println("begin compare");
return s.getScore() > 85;
}
@Test
public void test() {
Stream<Student> stream = Stream.of(stuArr).filter(this::filter);
System.out.println("split-------------------------------------");
List<Student> studentList = stream.collect(toList());
}
我们将filter中的逻辑抽象成方法,在方法中加入打印逻辑,如果stream的转换操作是延迟执行的,那么split会先打印,否则后打印,代码运行结果为
可见stream的操作是延迟执行的。
TIP:
当我们操作一个流的时候,并不会修改流底层的集合(即使集合是线程安全的),如果想要修改原有的集合,就无法定义流操作的输出。
由于stream的延迟执行特性,在聚合操作执行前修改数据源是允许的。
List<String> wordList;@Before
public void init() {
wordList = new ArrayList<String>() {
{
add("a");
add("b");
add("c");
add("d");
add("e");
add("f");
add("g");
}
};
}
/**
* 延迟执行特性,在聚合操作之前都可以添加相应元素
*/
@Test
public void test() {
Stream<String> words = wordList.stream();
wordList.add("END");
long n = words.distinct().count();
System.out.println(n);
}
最后打印的结果是8
如下代码是错误的
/*** 延迟执行特性,会产生干扰
* nullPointException
*/
@Test
public void test2(){
Stream<String> words1 = wordList.stream();
words1.forEach(s -> {
System.out.println("s->"+s);
if (s.length() < 4) {
System.out.println("select->"+s);
wordList.remove(s);
System.out.println(wordList);
}
});
}
结果报空指针异常
3.创建stream
1)通过数组创建
/*** 通过数组创建流
*/
@Test
public void testArrayStream(){
//1.通过Arrays.stream
//1.1基本类型
int[] arr = new int[]{1,2,34,5};
IntStream intStream = Arrays.stream(arr);
//1.2引用类型
Student[] studentArr = new Student[]{new Student("s1",29),new Student("s2",27)};
Stream<Student> studentStream = Arrays.stream(studentArr);
//2.通过Stream.of
Stream<Integer> stream1 = Stream.of(1,2,34,5,65);
//注意生成的是int[]的流
Stream<int[]> stream2 = Stream.of(arr,arr);
stream2.forEach(System.out::println);
}
2)通过集合创建流
/*** 通过集合创建流
*/
@Test
public void testCollectionStream(){
List<String> strs = Arrays.asList("11212","dfd","2323","dfhgf");
//创建普通流
Stream<String> stream = strs.stream();
//创建并行流
Stream<String> stream1 = strs.parallelStream();
}
3)创建空的流
@Testpublic void testEmptyStream(){
//创建一个空的stream
Stream<Integer> stream = Stream.empty();
}
4)创建无限流
@Test
public void testUnlimitStream(){
//创建无限流,通过limit提取指定大小
Stream.generate(()->"number"+new Random().nextInt()).limit(100).forEach(System.out::println);
Stream.generate(()->new Student("name",10)).limit(20).forEach(System.out::println);
}
5)创建规律的无限流
/*** 产生规律的数据
*/
@Test
public void testUnlimitStream1(){
Stream.iterate(0,x->x+1).limit(10).forEach(System.out::println);
Stream.iterate(0,x->x).limit(10).forEach(System.out::println);
//Stream.iterate(0,x->x).limit(10).forEach(System.out::println);与如下代码意思是一样的
Stream.iterate(0, UnaryOperator.identity()).limit(10).forEach(System.out::println);
}
4.对stream的操作
1)最常使用
map:转换流,将一种类型的流转换为另外一种流
/*** map把一种类型的流转换为另外一种类型的流
* 将String数组中字母转换为大写
*/
@Test
public void testMap() {
String[] arr = new String[]{"yes", "YES", "no", "NO"};
Arrays.stream(arr).map(x -> x.toLowerCase()).forEach(System.out::println);
}
filter:过滤流,过滤流中的元素
@Testpublic void testFilter(){
Integer[] arr = new Integer[]{1,2,3,4,5,6,7,8,9,10};
Arrays.stream(arr).filter(x->x>3&&x<8).forEach(System.out::println);
}
flapMap:拆解流,将流中每一个元素拆解成一个流
/*** flapMap:拆解流
*/
@Test
public void testFlapMap1() {
String[] arr1 = {"a", "b", "c", "d"};
String[] arr2 = {"e", "f", "c", "d"};
String[] arr3 = {"h", "j", "c", "d"};
// Stream.of(arr1, arr2, arr3).flatMap(x -> Arrays.stream(x)).forEach(System.out::println);
Stream.of(arr1, arr2, arr3).flatMap(Arrays::stream).forEach(System.out::println);
}
sorted:对流进行排序
String[] arr1 = {"abc","a","bc","abcd"};/**
* Comparator.comparing是一个键提取的功能
* 以下两个语句表示相同意义
*/
@Test
public void testSorted1_(){
/**
* 按照字符长度排序
*/
Arrays.stream(arr1).sorted((x,y)->{
if (x.length()>y.length())
return 1;
else if (x.length()<y.length())
return -1;
else
return 0;
}).forEach(System.out::println);
Arrays.stream(arr1).sorted(Comparator.comparing(String::length)).forEach(System.out::println);
}
/**
* 倒序
* reversed(),java8泛型推导的问题,所以如果comparing里面是非方法引用的lambda表达式就没办法直接使用reversed()
* Comparator.reverseOrder():也是用于翻转顺序,用于比较对象(Stream里面的类型必须是可比较的)
* Comparator. naturalOrder():返回一个自然排序比较器,用于比较对象(Stream里面的类型必须是可比较的)
*/
@Test
public void testSorted2_(){
Arrays.stream(arr1).sorted(Comparator.comparing(String::length).reversed()).forEach(System.out::println);
Arrays.stream(arr1).sorted(Comparator.reverseOrder()).forEach(System.out::println);
Arrays.stream(arr1).sorted(Comparator.naturalOrder()).forEach(System.out::println);
}
/**
* thenComparing
* 先按照首字母排序
* 之后按照String的长度排序
*/
@Test
public void testSorted3_(){
Arrays.stream(arr1).sorted(Comparator.comparing(this::com1).thenComparing(String::length)).forEach(System.out::println);
}
public char com1(String x){
return x.charAt(0);
}
2)提取流和组合流
@Beforepublic void init(){
arr1 = new String[]{"a","b","c","d"};
arr2 = new String[]{"d","e","f","g"};
arr3 = new String[]{"i","j","k","l"};
}
/**
* limit,限制从流中获得前n个数据
*/
@Test
public void testLimit(){
Stream.iterate(1,x->x+2).limit(10).forEach(System.out::println);
}
/**
* skip,跳过前n个数据
*/
@Test
public void testSkip(){
// Stream.of(arr1).skip(2).limit(2).forEach(System.out::println);
Stream.iterate(1,x->x+2).skip(1).limit(5).forEach(System.out::println);
}
/**
* 可以把两个stream合并成一个stream(合并的stream类型必须相同)
* 只能两两合并
*/
@Test
public void testConcat(){
Stream<String> stream1 = Stream.of(arr1);
Stream<String> stream2 = Stream.of(arr2);
Stream.concat(stream1,stream2).distinct().forEach(System.out::println);
}
3)聚合操作
@Beforepublic void init(){
arr = new String[]{"b","ab","abc","abcd","abcde"};
}
/**
* max、min
* 最大最小值
*/
@Test
public void testMaxAndMin(){
Stream.of(arr).max(Comparator.comparing(String::length)).ifPresent(System.out::println);
Stream.of(arr).min(Comparator.comparing(String::length)).ifPresent(System.out::println);
}
/**
* count
* 计算数量
*/
@Test
public void testCount(){
long count = Stream.of(arr).count();
System.out.println(count);
}
/**
* findFirst
* 查找第一个
*/
@Test
public void testFindFirst(){
String str = Stream.of(arr).parallel().filter(x->x.length()>3).findFirst().orElse("noghing");
System.out.println(str);
}
/**
* findAny
* 找到所有匹配的元素
* 对并行流十分有效
* 只要在任何片段发现了第一个匹配元素就会结束整个运算
*/
@Test
public void testFindAny(){
Optional<String> optional = Stream.of(arr).parallel().filter(x->x.length()>3).findAny();
optional.ifPresent(System.out::println);
}
/**
* anyMatch
* 是否含有匹配元素
*/
@Test
public void testAnyMatch(){
Boolean aBoolean = Stream.of(arr).anyMatch(x->x.startsWith("a"));
System.out.println(aBoolean);
}
@Test
public void testStream1() {
Optional<Integer> optional = Stream.of(1,2,3).filter(x->x>1).reduce((x,y)->x+y);
System.out.println(optional.get());
}
4)Optional类型
通常聚合操作会返回一个Optional类型,Optional表示一个安全的指定结果类型,所谓的安全指的是避免直接调用返回类型的null值而造成空指针异常,调用optional.ifPresent()可以判断返回值是否为空,或者直接调用ifPresent(Consumer<? super T> consumer)在结果部位空时进行消费操作;调用optional.get()获取返回值。通常的使用方式如下:
@Testpublic void testOptional() {
List<String> list = new ArrayList<String>() {
{
add("user1");
add("user2");
}
};
Optional<String> opt = Optional.of("andy with u");
opt.ifPresent(list::add);
list.forEach(System.out::println);
}
使用Optional可以在没有值时指定一个返回值,例如
@Testpublic void testOptional2() {
Integer[] arr = new Integer[]{4,5,6,7,8,9};
Integer result = Stream.of(arr).filter(x->x>9).max(Comparator.naturalOrder()).orElse(-1);
System.out.println(result);
Integer result1 = Stream.of(arr).filter(x->x>9).max(Comparator.naturalOrder()).orElseGet(()->-1);
System.out.println(result1);
Integer result2 = Stream.of(arr).filter(x->x>9).max(Comparator.naturalOrder()).orElseThrow(RuntimeException::new);
System.out.println(result2);
}
Optional的创建
采用Optional.empty()创建一个空的Optional,使用Optional.of()创建指定值的Optional。同样也可以调用Optional对象的map方法进行Optional的转换,调用flatMap方法进行Optional的迭代
@Testpublic void testStream1() {
Optional<Student> studentOptional = Optional.of(new Student("user1",21));
Optional<String> optionalStr = studentOptional.map(Student::getName);
System.out.println(optionalStr.get());
}
public static Optional<Double> inverse(Double x) {
return x == 0 ? Optional.empty() : Optional.of(1 / x);
}
public static Optional<Double> squareRoot(Double x) {
return x < 0 ? Optional.empty() : Optional.of(Math.sqrt(x));
}
/**
* Optional的迭代
*/
@Test
public void testStream2() {
double x = 4d;
Optional<Double> result1 = inverse(x).flatMap(StreamTest7::squareRoot);
result1.ifPresent(System.out::println);
Optional<Double> result2 = Optional.of(4.0).flatMap(StreamTest7::inverse).flatMap(StreamTest7::squareRoot);
result2.ifPresent(System.out::println);
}
5)收集结果
Student[] students;@Before
public void init(){
students = new Student[100];
for (int i=0;i<30;i++){
Student student = new Student("user",i);
students[i] = student;
}
for (int i=30;i<60;i++){
Student student = new Student("user"+i,i);
students[i] = student;
}
for (int i=60;i<100;i++){
Student student = new Student("user"+i,i);
students[i] = student;
}
}
@Test
public void testCollect1(){
/**
* 生成List
*/
List<Student> list = Arrays.stream(students).collect(toList());
list.forEach((x)-> System.out.println(x));
/**
* 生成Set
*/
Set<Student> set = Arrays.stream(students).collect(toSet());
set.forEach((x)-> System.out.println(x));
/**
* 如果包含相同的key,则需要提供第三个参数,否则报错
*/
Map<String,Integer> map = Arrays.stream(students).collect(toMap(Student::getName,Student::getScore,(s,a)->s+a));
map.forEach((x,y)-> System.out.println(x+"->"+y));
}
/**
* 生成数组
*/
@Test
public void testCollect2(){
Student[] s = Arrays.stream(students).toArray(Student[]::new);
for (int i=0;i<s.length;i++)
System.out.println(s[i]);
}
/**
* 指定生成的类型
*/
@Test
public void testCollect3(){
HashSet<Student> s = Arrays.stream(students).collect(toCollection(HashSet::new));
s.forEach(System.out::println);
}
/**
* 统计
*/
@Test
public void testCollect4(){
IntSummaryStatistics summaryStatistics = Arrays.stream(students).collect(Collectors.summarizingInt(Student::getScore));
System.out.println("getAverage->"+summaryStatistics.getAverage());
System.out.println("getMax->"+summaryStatistics.getMax());
System.out.println("getMin->"+summaryStatistics.getMin());
System.out.println("getCount->"+summaryStatistics.getCount());
System.out.println("getSum->"+summaryStatistics.getSum());
}
6)分组和分片
分组和分片的意义是,将collect的结果集展示位Map<key,val>的形式,通常的用法如下:
Student[] students;@Before
public void init(){
students = new Student[100];
for (int i=0;i<30;i++){
Student student = new Student("user1",i);
students[i] = student;
}
for (int i=30;i<60;i++){
Student student = new Student("user2",i);
students[i] = student;
}
for (int i=60;i<100;i++){
Student student = new Student("user3",i);
students[i] = student;
}
}
@Test
public void testGroupBy1(){
Map<String,List<Student>> map = Arrays.stream(students).collect(groupingBy(Student::getName));
map.forEach((x,y)-> System.out.println(x+"->"+y));
}
/**
* 如果只有两类,使用partitioningBy会比groupingBy更有效率
*/
@Test
public void testPartitioningBy(){
Map<Boolean,List<Student>> map = Arrays.stream(students).collect(partitioningBy(x->x.getScore()>50));
map.forEach((x,y)-> System.out.println(x+"->"+y));
}
/**
* downstream指定类型
*/
@Test
public void testGroupBy2(){
Map<String,Set<Student>> map = Arrays.stream(students).collect(groupingBy(Student::getName,toSet()));
map.forEach((x,y)-> System.out.println(x+"->"+y));
}
/**
* downstream 聚合操作
*/
@Test
public void testGroupBy3(){
/**
* counting
*/
Map<String,Long> map1 = Arrays.stream(students).collect(groupingBy(Student::getName,counting()));
map1.forEach((x,y)-> System.out.println(x+"->"+y));
/**
* summingInt
*/
Map<String,Integer> map2 = Arrays.stream(students).collect(groupingBy(Student::getName,summingInt(Student::getScore)));
map2.forEach((x,y)-> System.out.println(x+"->"+y));
/**
* maxBy
*/
Map<String,Optional<Student>> map3 = Arrays.stream(students).collect(groupingBy(Student::getName,maxBy(Comparator.comparing(Student::getScore))));
map3.forEach((x,y)-> System.out.println(x+"->"+y));
/**
* mapping
*/
Map<String,Set<Integer>> map4 = Arrays.stream(students).collect(groupingBy(Student::getName,mapping(Student::getScore,toSet())));
map4.forEach((x,y)-> System.out.println(x+"->"+y));
}
5.原始类型流
在数据量比较大的情况下,将基本数据类型(int,double...)包装成相应对象流的做法是低效的,因此,我们也可以直接将数据初始化为原始类型流,在原始类型流上的操作与对象流类似,我们只需要记住两点
1.原始类型流的初始化
2.原始类型流与流对象的转换
DoubleStream doubleStream;IntStream intStream;
/**
* 原始类型流的初始化
*/
@Before
public void testStream1(){
doubleStream = DoubleStream.of(0.1,0.2,0.3,0.8);
intStream = IntStream.of(1,3,5,7,9);
IntStream stream1 = IntStream.rangeClosed(0,100);
IntStream stream2 = IntStream.range(0,100);
}
/**
* 流与原始类型流的转换
*/
@Test
public void testStream2(){
Stream<Double> stream = doubleStream.boxed();
doubleStream = stream.mapToDouble(Double::new);
}
6.并行流
可以将普通顺序执行的流转变为并行流,只需要调用顺序流的parallel() 方法即可,如Stream.iterate(1, x -> x + 1).limit(10).parallel()。
1) 并行流的执行顺序
我们调用peek方法来瞧瞧并行流和串行流的执行顺序,peek方法顾名思义,就是偷窥流内的数据,peek方法声明为Stream<T> peek(Consumer<? super T> action);加入打印程序可以观察到通过流内数据,见如下代码:
public void peek1(int x) {System.out.println(Thread.currentThread().getName() + ":->peek1->" + x);
}
public void peek2(int x) {
System.out.println(Thread.currentThread().getName() + ":->peek2->" + x);
}
public void peek3(int x) {
System.out.println(Thread.currentThread().getName() + ":->final result->" + x);
}
/**
* peek,监控方法
* 串行流和并行流的执行顺序
*/
@org.junit.Test
public void testPeek() {
Stream<Integer> stream = Stream.iterate(1, x -> x + 1).limit(10);
stream.peek(this::peek1).filter(x -> x > 5)
.peek(this::peek2).filter(x -> x < 8)
.peek(this::peek3)
.forEach(System.out::println);
}
@Test
public void testPeekPal() {
Stream<Integer> stream = Stream.iterate(1, x -> x + 1).limit(10).parallel();
stream.peek(this::peek1).filter(x -> x > 5)
.peek(this::peek2).filter(x -> x < 8)
.peek(this::peek3)
.forEach(System.out::println);
}
串行流打印结果如下:
并行流打印结果如下:
咋看不一定能看懂,我们用如下的图来解释
我们将stream.filter(x -> x > 5).filter(x -> x < 8).forEach(System.out::println)的过程想象成上图的管道,我们在管道上加入的peek相当于一个阀门,透过这个阀门查看流经的数据,
1)当我们使用顺序流时,数据按照源数据的顺序依次通过管道,当一个数据被filter过滤,或者经过整个管道而输出后,第二个数据才会开始重复这一过程
2)当我们使用并行流时,系统除了主线程外启动了七个线程(我的电脑是4核八线程)来执行处理任务,因此执行是无序的,但同一个线程内处理的数据是按顺序进行的。
2) sorted()、distinct()等对并行流的影响
sorted()、distinct()是元素相关方法,和整体的数据是有关系的,map,filter等方法和已经通过的元素是不相关的,不需要知道流里面有哪些元素 ,并行执行和sorted会不会产生冲突呢?
结论:1.并行流和排序是不冲突的,2.一个流是否是有序的,对于一些api可能会提高执行效率,对于另一些api可能会降低执行效率
3.如果想要输出的结果是有序的,对于并行的流需要使用forEachOrdered(forEach的输出效率更高)
我们做如下实验:
/*** 生成一亿条0-100之间的记录
*/
@Before
public void init() {
Random random = new Random();
list = Stream.generate(() -> random.nextInt(100)).limit(100000000).collect(toList());
}
/**
* tip
*/
@org.junit.Test
public void test1() {
long begin1 = System.currentTimeMillis();
list.stream().filter(x->(x > 10)).filter(x->x<80).count();
long end1 = System.currentTimeMillis();
System.out.println(end1-begin1);
list.stream().parallel().filter(x->(x > 10)).filter(x->x<80).count();
long end2 = System.currentTimeMillis();
System.out.println(end2-end1);
long begin1_ = System.currentTimeMillis();
list.stream().filter(x->(x > 10)).filter(x->x<80).distinct().sorted().count();
long end1_ = System.currentTimeMillis();
System.out.println(end1-begin1);
list.stream().parallel().filter(x->(x > 10)).filter(x->x<80).distinct().sorted().count();
long end2_ = System.currentTimeMillis();
System.out.println(end2_-end1_);
}
可见,对于串行流.distinct().sorted()方法对于运行时间没有影响,但是对于串行流,会使得运行时间大大增加,因此对于包含sorted、distinct()等与全局数据相关的操作,不推荐使用并行流。
7.stream vs spark rdd
最初看到stream的一个直观感受是和spark像,真的像
val count = sc.parallelize(1 to NUM_SAMPLES).filter { _ =>val x = math.random
val y = math.random
x*x + y*y < 1}.count()println(s"Pi is roughly ${4.0 * count / NUM_SAMPLES}")
以上代码摘自spark官网,使用的是scala语言,一个最基础的word count代码,这里我们简单介绍一下spark,spark是当今最流行的基于内存的大数据处理框架,spark中的一个核心概念是RDD(弹性分布式数据集),将分布于不同处理器上的数据抽象成rdd,rdd上支持两种类型的操作1) Transformation(变换)2) Action(行动),对于rdd的Transformation算子并不会立即执行,只有当使用了Action算子后,才会触发。
总结
以上所示是小编给大家介绍的Java8中的Stream相关知识,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!
以上是 初识Java8中的Stream 的全部内容, 来源链接: utcz.com/p/214433.html