SPFA 算法实例讲解

适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便 派上用场了。 我们约定有向加权图G不存在负权回路,即最短路径一定存在。当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重 点。

算法思想:我们用数组d记录每个结点的最短路径估计值,用邻接表来存储图G。我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的 结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在 当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止

期望的时间复杂度O(ke), 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2。

实现方法:

建立一个队列,初始时队列里只有起始点,再建立一个表格记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该点到他本身的路径赋为 0)。然后执行松弛操作,用队列里有的点作为起始点去刷新到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后。重复执行直到队列 为空。

判断有无负环:

如果某个点进入队列的次数超过N次则存在负环(SPFA无法处理带负环的图)

首先建立起始点a到其余各点的

最短路径表格

首先源点a入队,当队列非空时:

1、队首元素(a)出队,对以a为起始点的所有边的终点依次进行松弛操作(此处有b,c,d三个点),此时路径表格状态为:

在松弛时三个点的最短路径估值变小了,而这些点队列中都没有出现,这些点

需要入队,此时,队列中新入队了三个结点b,c,d

队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e点),此时路径表格状态为:

在最短路径表中,e的最短路径估值也变小了,e在队列中不存在,因此e也要

入队,此时队列中的元素为c,d,e

队首元素c点出队,对以c为起始点的所有边的终点依次进行松弛操作(此处有e,f两个点),此时路径表格状态为:

在最短路径表中,e,f的最短路径估值变小了,e在队列中存在,f不存在。因此

e不用入队了,f要入队,此时队列中的元素为d,e,f

队首元素d点出队,对以d为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:

在最短路径表中,g的最短路径估值没有变小(松弛不成功),没有新结点入队,队列中元素为f,g

队首元素f点出队,对以f为起始点的所有边的终点依次进行松弛操作(此处有d,e,g三个点),此时路径表格状态为:

在最短路径表中,e,g的最短路径估值又变小,队列中无e点,e入队,队列中存在g这个点,g不用入队,此时队列中元素为g,e

队首元素g点出队,对以g为起始点的所有边的终点依次进行松弛操作(此处只有b点),此时路径表格状态为:

在最短路径表中,b的最短路径估值又变小,队列中无b点,b入队,此时队列中元素为e,b

队首元素e点出队,对以e为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:

在最短路径表中,g的最短路径估值没变化(松弛不成功),此时队列中元素为b

队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e这个点),此时路径表格状态为:

在最短路径表中,e的最短路径估值没变化(松弛不成功),此时队列为空了

最终a到g的最短路径为14

java代码

package spfa负权路径;

import java.awt.List;

import java.util.ArrayList;

import java.util.Scanner;

public class SPFA {

/**

* @param args

*/

public long[] result; //用于得到第s个顶点到其它顶点之间的最短距离

//数组实现邻接表存储

class edge{

public int a;//边的起点

public int b;//边的终点

public int value;//边的值

public edge(int a,int b,int value){

this.a=a;

this.b=b;

this.value=value;

}

}

public static void main(String[] args) {

// TODO Auto-generated method stub

SPFA spafa=new SPFA();

Scanner scan=new Scanner(System.in);

int n=scan.nextInt();

int s=scan.nextInt();

int p=scan.nextInt();

edge[] A=new edge[p];

for(int i=0;i<p;i++){

int a=scan.nextInt();

int b=scan.nextInt();

int value=scan.nextInt();

A[i]=spafa.new edge(a,b,value);

}

if(spafa.getShortestPaths(n,s,A)){

for(int i=0;i<spafa.result.length;i++){

System.out.println(spafa.result[i]+" ");

}

}else{

System.out.println("存在负环");

}

}

/*

* 参数n:给定图的顶点个数

* 参数s:求取第s个顶点到其它所有顶点之间的最短距离

* 参数edge:给定图的具体边

* 函数功能:如果给定图不含负权回路,则可以得到最终结果,如果含有负权回路,则不能得到最终结果

*/

private boolean getShortestPaths(int n, int s, edge[] A) {

// TODO Auto-generated method stub

ArrayList<Integer> list = new ArrayList<Integer>();

result=new long[n];

boolean used[]=new boolean[n];

int num[]=new int[n];

for(int i=0;i<n;i++){

result[i]=Integer.MAX_VALUE;

used[i]=false;

}

result[s]=0;//第s个顶点到自身距离为0

used[s]=true;//表示第s个顶点进入数组队

num[s]=1;//表示第s个顶点已被遍历一次

list.add(s); //第s个顶点入队

while(list.size()!=0){

int a=list.get(0);//获取数组队中第一个元素

list.remove(0);//删除数组队中第一个元素

for(int i=0;i<A.length;i++){

//当list数组队的第一个元素等于边A[i]的起点时

if(a==A[i].a&&result[A[i].b]>(result[A[i].a]+A[i].value)){

result[A[i].b]=result[A[i].a]+A[i].value;

if(!used[A[i].b]){

list.add(A[i].b);

num[A[i].b]++;

if(num[A[i].b]>n){

return false;

}

used[A[i].b]=true;//表示边A[i]的终点b已进入数组队

}

}

}

used[a]=false; //顶点a出数组对

}

return true;

}

}

以上这篇SPFA 算法实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 SPFA 算法实例讲解 的全部内容, 来源链接: utcz.com/p/213883.html

回到顶部