Java concurrency集合之ConcurrentSkipListMap_动力节点Java学院整理

ConcurrentSkipListMap介绍

ConcurrentSkipListMap是线程安全的有序的哈希表,适用于高并发的场景。

ConcurrentSkipListMap和TreeMap,它们虽然都是有序的哈希表。但是,第一,它们的线程安全机制不同,TreeMap是非线程安全的,而ConcurrentSkipListMap是线程安全的。第二,ConcurrentSkipListMap是通过跳表实现的,而TreeMap是通过红黑树实现的。

关于跳表(Skip List),它是平衡树的一种替代的数据结构,但是和红黑树不相同的是,跳表对于树的平衡的实现是基于一种随机化的算法的,这样也就是说跳表的插入和删除的工作是比较简单的。 

ConcurrentSkipListMap原理和数据结构

ConcurrentSkipListMap的数据结构,如下图所示:

说明:

先以数据“7,14,21,32,37,71,85”序列为例,来对跳表进行简单说明。

跳表分为许多层(level),每一层都可以看作是数据的索引,这些索引的意义就是加快跳表查找数据速度。每一层的数据都是有序的,上一层数据是下一层数据的子集,并且第一层(level 1)包含了全部的数据;层次越高,跳跃性越大,包含的数据越少。

跳表包含一个表头,它查找数据时,是从上往下,从左往右进行查找。现在“需要找出值为32的节点”为例,来对比说明跳表和普遍的链表。

情况1:链表中查找“32”节点

路径如下图1-02所示:

需要4步(红色部分表示路径)。

情况2:跳表中查找“32”节点

路径如下图1-03所示:

忽略索引垂直线路上路径的情况下,只需要2步(红色部分表示路径)。

下面说说Java中ConcurrentSkipListMap的数据结构。

(01) ConcurrentSkipListMap继承于AbstractMap类,也就意味着它是一个哈希表。

(02) Index是ConcurrentSkipListMap的内部类,它与“跳表中的索引相对应”。HeadIndex继承于Index,ConcurrentSkipListMap中含有一个HeadIndex的对象head,head是“跳表的表头”。

(03) Index是跳表中的索引,它包含“右索引的指针(right)”,“下索引的指针(down)”和“哈希表节点node”。node是Node的对象,Node也是ConcurrentSkipListMap中的内部类。 

ConcurrentSkipListMap函数列表

// 构造一个新的空映射,该映射按照键的自然顺序进行排序。

ConcurrentSkipListMap()

// 构造一个新的空映射,该映射按照指定的比较器进行排序。

ConcurrentSkipListMap(Comparator<? super K> comparator)

// 构造一个新映射,该映射所包含的映射关系与给定映射包含的映射关系相同,并按照键的自然顺序进行排序。

ConcurrentSkipListMap(Map<? extends K,? extends V> m)

// 构造一个新映射,该映射所包含的映射关系与指定的有序映射包含的映射关系相同,使用的顺序也相同。

ConcurrentSkipListMap(SortedMap<K,? extends V> m)

// 返回与大于等于给定键的最小键关联的键-值映射关系;如果不存在这样的条目,则返回 null。

Map.Entry<K,V> ceilingEntry(K key)

// 返回大于等于给定键的最小键;如果不存在这样的键,则返回 null。

K ceilingKey(K key)

// 从此映射中移除所有映射关系。

void clear()

// 返回此 ConcurrentSkipListMap 实例的浅表副本。

ConcurrentSkipListMap<K,V> clone()

// 返回对此映射中的键进行排序的比较器;如果此映射使用键的自然顺序,则返回 null。

Comparator<? super K> comparator()

// 如果此映射包含指定键的映射关系,则返回 true。

boolean containsKey(Object key)

// 如果此映射为指定值映射一个或多个键,则返回 true。

boolean containsValue(Object value)

// 返回此映射中所包含键的逆序 NavigableSet 视图。

NavigableSet<K> descendingKeySet()

// 返回此映射中所包含映射关系的逆序视图。

ConcurrentNavigableMap<K,V> descendingMap()

// 返回此映射中所包含的映射关系的 Set 视图。

Set<Map.Entry<K,V>> entrySet()

// 比较指定对象与此映射的相等性。

boolean equals(Object o)

// 返回与此映射中的最小键关联的键-值映射关系;如果该映射为空,则返回 null。

Map.Entry<K,V> firstEntry()

// 返回此映射中当前第一个(最低)键。

K firstKey()

// 返回与小于等于给定键的最大键关联的键-值映射关系;如果不存在这样的键,则返回 null。

Map.Entry<K,V> floorEntry(K key)

// 返回小于等于给定键的最大键;如果不存在这样的键,则返回 null。

K floorKey(K key)

// 返回指定键所映射到的值;如果此映射不包含该键的映射关系,则返回 null。

V get(Object key)

// 返回此映射的部分视图,其键值严格小于 toKey。

ConcurrentNavigableMap<K,V> headMap(K toKey)

// 返回此映射的部分视图,其键小于(或等于,如果 inclusive 为 true)toKey。

ConcurrentNavigableMap<K,V> headMap(K toKey, boolean inclusive)

// 返回与严格大于给定键的最小键关联的键-值映射关系;如果不存在这样的键,则返回 null。

Map.Entry<K,V> higherEntry(K key)

// 返回严格大于给定键的最小键;如果不存在这样的键,则返回 null。

K higherKey(K key)

// 如果此映射未包含键-值映射关系,则返回 true。

boolean isEmpty()

// 返回此映射中所包含键的 NavigableSet 视图。

NavigableSet<K> keySet()

// 返回与此映射中的最大键关联的键-值映射关系;如果该映射为空,则返回 null。

Map.Entry<K,V> lastEntry()

// 返回映射中当前最后一个(最高)键。

K lastKey()

// 返回与严格小于给定键的最大键关联的键-值映射关系;如果不存在这样的键,则返回 null。

Map.Entry<K,V> lowerEntry(K key)

// 返回严格小于给定键的最大键;如果不存在这样的键,则返回 null。

K lowerKey(K key)

// 返回此映射中所包含键的 NavigableSet 视图。

NavigableSet<K> navigableKeySet()

// 移除并返回与此映射中的最小键关联的键-值映射关系;如果该映射为空,则返回 null。

Map.Entry<K,V> pollFirstEntry()

// 移除并返回与此映射中的最大键关联的键-值映射关系;如果该映射为空,则返回 null。

Map.Entry<K,V> pollLastEntry()

// 将指定值与此映射中的指定键关联。

V put(K key, V value)

// 如果指定键已经不再与某个值相关联,则将它与给定值关联。

V putIfAbsent(K key, V value)

// 从此映射中移除指定键的映射关系(如果存在)。

V remove(Object key)

// 只有目前将键的条目映射到给定值时,才移除该键的条目。

boolean remove(Object key, Object value)

// 只有目前将键的条目映射到某一值时,才替换该键的条目。

V replace(K key, V value)

// 只有目前将键的条目映射到给定值时,才替换该键的条目。

boolean replace(K key, V oldValue, V newValue)

// 返回此映射中的键-值映射关系数。

int size()

// 返回此映射的部分视图,其键的范围从 fromKey 到 toKey。

ConcurrentNavigableMap<K,V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive)

// 返回此映射的部分视图,其键值的范围从 fromKey(包括)到 toKey(不包括)。

ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey)

// 返回此映射的部分视图,其键大于等于 fromKey。

ConcurrentNavigableMap<K,V> tailMap(K fromKey)

// 返回此映射的部分视图,其键大于(或等于,如果 inclusive 为 true)fromKey。

ConcurrentNavigableMap<K,V> tailMap(K fromKey, boolean inclusive)

// 返回此映射中所包含值的 Collection 视图。

Collection<V> values()

下面从ConcurrentSkipListMap的添加,删除,获取这3个方面对它进行分析。

1. 添加

下面以put(K key, V value)为例,对ConcurrentSkipListMap的添加方法进行说明。

public V put(K key, V value) {

if (value == null)

throw new NullPointerException();

return doPut(key, value, false);

}

实际上,put()是通过doPut()将key-value键值对添加到ConcurrentSkipListMap中的。

doPut()的源码如下:

private V doPut(K kkey, V value, boolean onlyIfAbsent) {

Comparable<? super K> key = comparable(kkey);

for (;;) {

// 找到key的前继节点

Node<K,V> b = findPredecessor(key);

// 设置n为“key的前继节点的后继节点”,即n应该是“插入节点”的“后继节点”

Node<K,V> n = b.next;

for (;;) {

if (n != null) {

Node<K,V> f = n.next;

// 如果两次获得的b.next不是相同的Node,就跳转到”外层for循环“,重新获得b和n后再遍历。

if (n != b.next)

break;

// v是“n的值”

Object v = n.value;

// 当n的值为null(意味着其它线程删除了n);此时删除b的下一个节点,然后跳转到”外层for循环“,重新获得b和n后再遍历。

if (v == null) { // n is deleted

n.helpDelete(b, f);

break;

}

// 如果其它线程删除了b;则跳转到”外层for循环“,重新获得b和n后再遍历。

if (v == n || b.value == null) // b is deleted

break;

// 比较key和n.key

int c = key.compareTo(n.key);

if (c > 0) {

b = n;

n = f;

continue;

}

if (c == 0) {

if (onlyIfAbsent || n.casValue(v, value))

return (V)v;

else

break; // restart if lost race to replace value

}

// else c < 0; fall through

}

// 新建节点(对应是“要插入的键值对”)

Node<K,V> z = new Node<K,V>(kkey, value, n);

// 设置“b的后继节点”为z

if (!b.casNext(n, z))

break; // 多线程情况下,break才可能发生(其它线程对b进行了操作)

// 随机获取一个level

// 然后在“第1层”到“第level层”的链表中都插入新建节点

int level = randomLevel();

if (level > 0)

insertIndex(z, level);

return null;

}

}

}

说明:doPut() 的作用就是将键值对添加到“跳表”中。

要想搞清doPut(),首先要弄清楚它的主干部分 ―― 我们先单纯的只考虑“单线程的情况下,将key-value添加到跳表中”,即忽略“多线程相关的内容”。它的流程如下:

第1步:找到“插入位置”。

即,找到“key的前继节点(b)”和“key的后继节点(n)”;key是要插入节点的键。

第2步:新建并插入节点。

即,新建节点z(key对应的节点),并将新节点z插入到“跳表”中(设置“b的后继节点为z”,“z的后继节点为n”)。

第3步:更新跳表。

即,随机获取一个level,然后在“跳表”的第1层~第level层之间,每一层都插入节点z;在第level层之上就不再插入节点了。若level数值大于“跳表的层次”,则新建一层。

主干部分“对应的精简后的doPut()的代码”如下(仅供参考):

private V doPut(K kkey, V value, boolean onlyIfAbsent) {

Comparable<? super K> key = comparable(kkey);

for (;;) {

// 找到key的前继节点

Node<K,V> b = findPredecessor(key);

// 设置n为key的后继节点

Node<K,V> n = b.next;

for (;;) {

// 新建节点(对应是“要被插入的键值对”)

Node<K,V> z = new Node<K,V>(kkey, value, n);

// 设置“b的后继节点”为z

b.casNext(n, z);

// 随机获取一个level

// 然后在“第1层”到“第level层”的链表中都插入新建节点

int level = randomLevel();

if (level > 0)

insertIndex(z, level);

return null;

}

}

}

理清主干之后,剩余的工作就相对简单了。主要是上面几步的对应算法的具体实现,以及多线程相关情况的处理!

2. 删除

下面以remove(Object key)为例,对ConcurrentSkipListMap的删除方法进行说明。

public V remove(Object key) {

return doRemove(key, null);

}

实际上,remove()是通过doRemove()将ConcurrentSkipListMap中的key对应的键值对删除的。

doRemove()的源码如下: 

final V doRemove(Object okey, Object value) {

Comparable<? super K> key = comparable(okey);

for (;;) {

// 找到“key的前继节点”

Node<K,V> b = findPredecessor(key);

// 设置n为“b的后继节点”(即若key存在于“跳表中”,n就是key对应的节点)

Node<K,V> n = b.next;

for (;;) {

if (n == null)

return null;

// f是“当前节点n的后继节点”

Node<K,V> f = n.next;

// 如果两次读取到的“b的后继节点”不同(其它线程操作了该跳表),则返回到“外层for循环”重新遍历。

if (n != b.next) // inconsistent read

break;

// 如果“当前节点n的值”变为null(其它线程操作了该跳表),则返回到“外层for循环”重新遍历。

Object v = n.value;

if (v == null) { // n is deleted

n.helpDelete(b, f);

break;

}

// 如果“前继节点b”被删除(其它线程操作了该跳表),则返回到“外层for循环”重新遍历。

if (v == n || b.value == null) // b is deleted

break;

int c = key.compareTo(n.key);

if (c < 0)

return null;

if (c > 0) {

b = n;

n = f;

continue;

}

// 以下是c=0的情况

if (value != null && !value.equals(v))

return null;

// 设置“当前节点n”的值为null

if (!n.casValue(v, null))

break;

// 设置“b的后继节点”为f

if (!n.appendMarker(f) || !b.casNext(n, f))

findNode(key); // Retry via findNode

else {

// 清除“跳表”中每一层的key节点

findPredecessor(key); // Clean index

// 如果“表头的右索引为空”,则将“跳表的层次”-1。

if (head.right == null)

tryReduceLevel();

}

return (V)v;

}

}

}

说明:doRemove()的作用是删除跳表中的节点。

和doPut()一样,我们重点看doRemove()的主干部分,了解主干部分之后,其余部分就非常容易理解了。下面是“单线程的情况下,删除跳表中键值对的步骤”:

第1步:找到“被删除节点的位置”。

即,找到“key的前继节点(b)”,“key所对应的节点(n)”,“n的后继节点f”;key是要删除节点的键。

第2步:删除节点。

即,将“key所对应的节点n”从跳表中移除 -- 将“b的后继节点”设为“f”!

第3步:更新跳表。

即,遍历跳表,删除每一层的“key节点”(如果存在的话)。如果删除“key节点”之后,跳表的层次需要-1;则执行相应的操作!

主干部分“对应的精简后的doRemove()的代码”如下(仅供参考): 

final V doRemove(Object okey, Object value) {

Comparable<? super K> key = comparable(okey);

for (;;) {

// 找到“key的前继节点”

Node<K,V> b = findPredecessor(key);

// 设置n为“b的后继节点”(即若key存在于“跳表中”,n就是key对应的节点)

Node<K,V> n = b.next;

for (;;) {

// f是“当前节点n的后继节点”

Node<K,V> f = n.next;

// 设置“当前节点n”的值为null

n.casValue(v, null);

// 设置“b的后继节点”为f

b.casNext(n, f);

// 清除“跳表”中每一层的key节点

findPredecessor(key);

// 如果“表头的右索引为空”,则将“跳表的层次”-1。

if (head.right == null)

tryReduceLevel();

return (V)v;

}

}

}

3. 获取

下面以get(Object key)为例,对ConcurrentSkipListMap的获取方法进行说明。

public V get(Object key) {

return doGet(key);

}

doGet的源码如下:

private V doGet(Object okey) {

Comparable<? super K> key = comparable(okey);

for (;;) {

// 找到“key对应的节点”

Node<K,V> n = findNode(key);

if (n == null)

return null;

Object v = n.value;

if (v != null)

return (V)v;

}

}

说明:doGet()是通过findNode()找到并返回节点的。

private Node<K,V> findNode(Comparable<? super K> key) {

for (;;) {

// 找到key的前继节点

Node<K,V> b = findPredecessor(key);

// 设置n为“b的后继节点”(即若key存在于“跳表中”,n就是key对应的节点)

Node<K,V> n = b.next;

for (;;) {

// 如果“n为null”,则跳转中不存在key对应的节点,直接返回null。

if (n == null)

return null;

Node<K,V> f = n.next;

// 如果两次读取到的“b的后继节点”不同(其它线程操作了该跳表),则返回到“外层for循环”重新遍历。

if (n != b.next) // inconsistent read

break;

Object v = n.value;

// 如果“当前节点n的值”变为null(其它线程操作了该跳表),则返回到“外层for循环”重新遍历。

if (v == null) { // n is deleted

n.helpDelete(b, f);

break;

}

if (v == n || b.value == null) // b is deleted

break;

// 若n是当前节点,则返回n。

int c = key.compareTo(n.key);

if (c == 0)

return n;

// 若“节点n的key”小于“key”,则说明跳表中不存在key对应的节点,返回null

if (c < 0)

return null;

// 若“节点n的key”大于“key”,则更新b和n,继续查找。

b = n;

n = f;

}

}

}

说明:findNode(key)的作用是在返回跳表中key对应的节点;存在则返回节点,不存在则返回null。

先弄清函数的主干部分,即抛开“多线程相关内容”,单纯的考虑单线程情况下,从跳表获取节点的算法。

第1步:找到“被删除节点的位置”。

根据findPredecessor()定位key所在的层次以及找到key的前继节点(b),然后找到b的后继节点n。

第2步:根据“key的前继节点(b)”和“key的前继节点的后继节点(n)”来定位“key对应的节点”。

具体是通过比较“n的键值”和“key”的大小。如果相等,则n就是所要查找的键。 

ConcurrentSkipListMap示例

import java.util.*;

import java.util.concurrent.*;

/*

* ConcurrentSkipListMap是“线程安全”的哈希表,而TreeMap是非线程安全的。

*

* 下面是“多个线程同时操作并且遍历map”的示例

* (01) 当map是ConcurrentSkipListMap对象时,程序能正常运行。

* (02) 当map是TreeMap对象时,程序会产生ConcurrentModificationException异常。

*

* @author skywang

*/

public class ConcurrentSkipListMapDemo1 {

// TODO: map是TreeMap对象时,程序会出错。

//private static Map<String, String> map = new TreeMap<String, String>();

private static Map<String, String> map = new ConcurrentSkipListMap<String, String>();

public static void main(String[] args) {

// 同时启动两个线程对map进行操作!

new MyThread("a").start();

new MyThread("b").start();

}

private static void printAll() {

String key, value;

Iterator iter = map.entrySet().iterator();

while(iter.hasNext()) {

Map.Entry entry = (Map.Entry)iter.next();

key = (String)entry.getKey();

value = (String)entry.getValue();

System.out.print("("+key+", "+value+"), ");

}

System.out.println();

}

private static class MyThread extends Thread {

MyThread(String name) {

super(name);

}

@Override

public void run() {

int i = 0;

while (i++ < 6) {

// “线程名” + "序号"

String val = Thread.currentThread().getName()+i;

map.put(val, "0");

// 通过“Iterator”遍历map。

printAll();

}

}

}

}

(某一次)运行结果:

(a1, 0), (a1, 0), (b1, 0), (b1, 0),

(a1, 0), (b1, 0), (b2, 0),

(a1, 0), (a1, 0), (a2, 0), (a2, 0), (b1, 0), (b1, 0), (b2, 0), (b2, 0), (b3, 0),

(b3, 0), (a1, 0),

(a2, 0), (a3, 0), (a1, 0), (b1, 0), (a2, 0), (b2, 0), (a3, 0), (b3, 0), (b1, 0), (b4, 0),

(b2, 0), (a1, 0), (b3, 0), (a2, 0), (b4, 0),

(a3, 0), (a1, 0), (a4, 0), (a2, 0), (b1, 0), (a3, 0), (b2, 0), (a4, 0), (b3, 0), (b1, 0), (b4, 0), (b2, 0), (b5, 0),

(b3, 0), (a1, 0), (b4, 0), (a2, 0), (b5, 0),

(a3, 0), (a1, 0), (a4, 0), (a2, 0), (a5, 0), (a3, 0), (b1, 0), (a4, 0), (b2, 0), (a5, 0), (b3, 0), (b1, 0), (b4, 0), (b2, 0), (b5, 0), (b3, 0), (b6, 0),

(b4, 0), (a1, 0), (b5, 0), (a2, 0), (b6, 0),

(a3, 0), (a4, 0), (a5, 0), (a6, 0), (b1, 0), (b2, 0), (b3, 0), (b4, 0), (b5, 0), (b6, 0),

结果说明:

示例程序中,启动两个线程(线程a和线程b)分别对ConcurrentSkipListMap进行操作。以线程a而言,它会先获取“线程名”+“序号”,然后将该字符串作为key,将“0”作为value,插入到ConcurrentSkipListMap中;接着,遍历并输出ConcurrentSkipListMap中的全部元素。 线程b的操作和线程a一样,只不过线程b的名字和线程a的名字不同。

当map是ConcurrentSkipListMap对象时,程序能正常运行。如果将map改为TreeMap时,程序会产生ConcurrentModificationException异常。

以上是 Java concurrency集合之ConcurrentSkipListMap_动力节点Java学院整理 的全部内容, 来源链接: utcz.com/p/212935.html

回到顶部