【Java】HashMap底层原理剖析

HashMap

https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...
https://xueqiu.com/8674684995...

  • HashMap底层原理剖析(超详细!!!)
    • 一、散列表结构
    • 二、什么是哈希?
    • 三、HashMap原理讲解
        • 3.1继承体系图
      • 3.2Node数据结构分析
      • 3.3底层存储结构
      • 3.4put数据原理分析
      • 3.5什么是哈希碰撞?
      • 3.6JDK8为什么引入红黑树?
      • 3.7扩容机制
    • 四、手撕源码
        • 1.HashMap核心属性分析
      • 2.构造方法分析
      • 3.put方法分析
      • 4.resize()方法分析
      • 5.get方法
      • 6.remove方法分析
      • 7.replace方法分析

HashMap底层原理剖析(超详细!!!)

一、散列表结构

散列表结构就是数组+链表的结构
【Java】HashMap底层原理剖析

二、什么是哈希?

Hash也称散列、哈希,对应的英文单词Hash,基本原理就是把任意长度的输入,通过Hash算法变成固定长度的输出

这个映射的规则就是对应的哈希算法,而原始数据映射后的二进制就是哈希值

不同的数据它对应的哈希码值是不一样的

哈希算法的效率非常高

三、HashMap原理讲解

3.1继承体系图

【Java】HashMap底层原理剖析

3.2Node数据结构分析

`static class Node<K,V> implements Map.Entry<K,V> {

final int hash;计算得到哈希值

final K key;

V value;

Node<K,V> next;

}

interface Entry<K, V> {

K getKey();

V getValue();

V setValue(V value);`

* 1

* 2

* 3

* 4

* 5

* 6

* 7

* 8

* 9

* 10

* 11

3.3底层存储结构

【Java】HashMap底层原理剖析
当链表长度到达8时,升级成红黑树结构

3.4put数据原理分析

【Java】HashMap底层原理剖析
首先put进去一个key----value
根据key值会计算出一个hash值
经过扰动使数据更散列
构造出一个node对象
最后在通过路由算法得出一个对应的index

3.5什么是哈希碰撞?

【Java】HashMap底层原理剖析
当传入的数据key对应计算出的hash值的后四位和上一个一样时,这时候计算出的index就会一致,就会发生碰撞,导致数据变成链表
例如:
(16-1)------->0000 0000 0000 1111
“张三”------->0100 1101 0001 1011
“李四”-------->1011 1010 0010 1011
此时,就会发现,张三和李四计算出的hash值转化为二进制的后四位一致,导致计算出index一致

3.6JDK8为什么引入红黑树?

哈希碰撞,会带来链化,效率会变低

引入红黑树会提高查找效率

3.7扩容机制

每次扩容为初始容量的2倍

eg:16------->32

为了防止数据过多,导致线性查询,效率变低,扩容使得桶数变多,每条链上数据变少,查询更快

四、手撕源码

1.HashMap核心属性分析

树化阈值-----8和64

负载因子0.75

threshold扩容阈值,当哈希表中的元素超过阈值时,触发扩容

loadFactory负载因子0.75,去计算阈值 eg:16*0.75

size-------当前哈希表中元素个数

modCount--------当前哈希表结构修改次数

2.构造方法分析

`public HashMap(int initialCapacity, float loadFactor) {

//校验 小于0报错

if (initialCapacity < 0)

throw new IllegalArgumentException("Illegal initial capacity: " +

initialCapacity);

//capacity大于最大值取最大值

if (initialCapacity > MAXIMUM_CAPACITY)

initialCapacity = MAXIMUM_CAPACITY;

//负载因子不能小于等于0

if (loadFactor <= 0 || Float.isNaN(loadFactor))

throw new IllegalArgumentException("Illegal load factor: " +

loadFactor);

this.loadFactor = loadFactor;

//tableSizeFor方法

this.threshold = tableSizeFor(initialCapacity);

}

---------------------------------------------------------

//传入一个初始容量,默认负载因子0.75

public HashMap(int initialCapacity) {

this(initialCapacity, DEFAULT_LOAD_FACTOR);

}

---------------------------------------------------------

//无参数,负载因子默认0.75

public HashMap() {

this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted

}

---------------------------------------------------------

//传入一个map的对象

public HashMap(Map<? extends K, ? extends V> m) {

this.loadFactor = DEFAULT_LOAD_FACTOR;

putMapEntries(m, false);

}`

* 1

* 2

* 3

* 4

* 5

* 6

* 7

* 8

* 9

* 10

* 11

* 12

* 13

* 14

* 15

* 16

* 17

* 18

* 19

* 20

* 21

* 22

* 23

* 24

* 25

* 26

* 27

* 28

* 29

* 30

* 31

* 32

* 33

3.put方法分析

`public V put(K key, V value) {

//返回putVal方法,给key进行了一次rehash

return putVal(hash(key), key, value, false, true);

}

----------------------------------------------------------

static final int hash(Object key) {

//让key对应的hash值的高16位也参与运算

int h;

return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);

}

----------------------------------------------------------

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict)

{

//tab:引用当前HashMap的散列表

//p:表示当前散列表的元素

//n:表示散列表数组的长度

//i:表示路由寻址的结果

Node<K,V>[] tab; Node<K,V> p; int n, i;

---------------------------------------------------------- //延迟初始化逻辑,当第一次调用putVal的时候,才去初始化HashMap对象的散列表大小

if ((tab = table) == null || (n = tab.length) == 0)

n = (tab = resize()).length;

----------------------------------------------------------

//寻找找到桶位,且刚好为null,则把k-v封装成node对象放进去

if ((p = tab[i = (n - 1) & hash]) == null)

tab[i] = newNode(hash, key, value, null);

----------------------------------------------------------

else {

//e:不为null时,找到一个与当前要插入的key-val一致的key对象

//k:临时的一个key

Node<K,V> e; K k;

//表示桶位中的该元素,与你当前插入的元素key一致,后续会有替换操作

if (p.hash == hash &&

((k = p.key) == key || (key != null && key.equals(k))))

e = p;

----------------------------------------------------------

//树化

else if (p instanceof TreeNode)

e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);

----------------------------------------------------------

else {

//链表的情况,而且链表的头元素与我们要插入的key不一致

for (int binCount = 0; ; ++binCount) {

//条件成立,即说明迭代到最后一个链表了,也没找到与你要插入的key一致的node对象

//说明要加入到链表的最后

if ((e = p.next) == null) {

p.next = newNode(hash, key, value, null);

//说明当前链表长度达到树化标准

if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st

treeifyBin(tab, hash);

break;

}

//说明找到的元素key一样,进行替换,break跳出循环即可

if (e.hash == hash &&

((k = e.key) == key || (key != null && key.equals(k))))

break;

p = e;

}

}

----------------------------------------------------------

//e不等于null,说明找到了一个与你插入元素完全一致的,进行替换

if (e != null) { // existing mapping for key

V oldValue = e.value;

if (!onlyIfAbsent || oldValue == null)

e.value = value;

afterNodeAccess(e);

return oldValue;

}

}

----------------------------------------------------------

//modCount:表示散列表结构被修改次数,替换元素不算次数

++modCount;

//插入新元素,size自增,如果自增大于扩容阈值,则触发扩容

if (++size > threshold)

resize();

afterNodeInsertion(evict);

return null;

}`

* 1

* 2

* 3

* 4

* 5

* 6

* 7

* 8

* 9

* 10

* 11

* 12

* 13

* 14

* 15

* 16

* 17

* 18

* 19

* 20

* 21

* 22

* 23

* 24

* 25

* 26

* 27

* 28

* 29

* 30

* 31

* 32

* 33

* 34

* 35

* 36

* 37

* 38

* 39

* 40

* 41

* 42

* 43

* 44

* 45

* 46

* 47

* 48

* 49

* 50

* 51

* 52

* 53

* 54

* 55

* 56

* 57

* 58

* 59

* 60

* 61

* 62

* 63

* 64

* 65

* 66

* 67

* 68

* 69

* 70

* 71

* 72

* 73

* 74

* 75

* 76

* 77

* 78

4.resize()方法分析

`//为了解决哈希冲突,影响哈希效率,所以会有扩容机制

----------------------------------------------------------

final Node<K,V>[] resize() {

//oldTab:引用扩容前的哈希表

//oldCap:表示扩容前table的数组长度

//oldThr:表示扩容之前阈值

//newCap,newThr:扩容后的数组长度大小,以及扩容后下次的阈值

Node<K,V>[] oldTab = table;

int oldCap = (oldTab == null) ? 0 : oldTab.length;

int oldThr = threshold;

int newCap, newThr = 0;

----------------------------------------------------------

//条件成立,说明hashmap散列表已经初始化过了,这是一次正常扩容

if (oldCap > 0) {

//扩容之前的table数组大小,已经达到了最大阈值后,则不扩容

//且设置扩容条件为int最大值

if (oldCap >= MAXIMUM_CAPACITY) {

threshold = Integer.MAX_VALUE;

return oldTab;

}

----------------------------------------------------------

//oldCAP左移一位,实现数值翻倍,且赋值给newcap,newcap小于数值最大值限制 且扩容之前阈值>=16

//这种情况下,则下一次扩容阈值等于当前阈值翻倍

else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&

oldCap >= DEFAULT_INITIAL_CAPACITY)

newThr = oldThr << 1; // double threshold

}

---------------------------------------------------------- //oldCap == 0,说明hashmap散列表为null

//1.new HashMap(inttCap,loadFactor);

//2.new HashMap(inttCap);

//3.new HashMap(map); map有数据

else if (oldThr > 0) // initial capacity was placed in threshold

newCap = oldThr;//一定是2的次方数

----------------------------------------------------------

//oldCap==0,oldThr==0

//new HashMap();

else { // zero initial threshold signifies using defaults

newCap = DEFAULT_INITIAL_CAPACITY;

newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);

}

----------------------------------------------------------

if (newThr == 0) {

float ft = (float)newCap * loadFactor;

newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?

(int)ft : Integer.MAX_VALUE);

}

threshold = newThr;

----------------------------------------------------------

---------------------------------------------------------- //创建一个更长更大的数组

@SuppressWarnings({"rawtypes","unchecked"})

Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];

table = newTab;

//说明,hashmap本次扩容之前,table不为null

if (oldTab != null) {

for (int j = 0; j < oldCap; ++j) {

Node<K,V> e;//当前node节点

//说明当前桶位中有数据,但是具体是链表还是红黑树,还是单个数据,不确定

if ((e = oldTab[j]) != null) {

//方便jvm GC时回收

oldTab[j] = null;

//说明是个单个元素,直接计算当前元素应存放的新数组的位置即可

if (e.next == null)

newTab[e.hash & (newCap - 1)] = e;

//判断有没有树化成红黑树

else if (e instanceof TreeNode)

((TreeNode<K,V>)e).split(this, newTab, j, oldCap);

//第三种情况:桶位已经形成链表

else { // preserve order

//地位链表--存放在扩容之后的数组的下标位置,与当前数组的下标位置一致

Node<K,V> loHead = null, loTail=null;

//高位链表--存放在扩容之后的数组的下标位置为当前数组下标位置+扩容之前数组的长度

Node<K,V> hiHead = null, hiTail=null;

----------------------------------------------------------

Node<K,V> next;

do {

next = e.next;

//hash--……1 1111

//hash--……0 1111

//0b 10000

if ((e.hash & oldCap) == 0) {

if (loTail == null)

loHead = e;

else

loTail.next = e;

loTail = e;

}

else {

if (hiTail == null)

hiHead = e;

else

hiTail.next = e;

hiTail = e;

}

}

while ((e = next) != null);

//

if (loTail != null) {

loTail.next = null;

newTab[j] = loHead;

}

//

if (hiTail != null) {

hiTail.next = null;

newTab[j + oldCap] = hiHead;

}

}

}

}

}

return newTab;

}`

* 1

* 2

* 3

* 4

* 5

* 6

* 7

* 8

* 9

* 10

* 11

* 12

* 13

* 14

* 15

* 16

* 17

* 18

* 19

* 20

* 21

* 22

* 23

* 24

* 25

* 26

* 27

* 28

* 29

* 30

* 31

* 32

* 33

* 34

* 35

* 36

* 37

* 38

* 39

* 40

* 41

* 42

* 43

* 44

* 45

* 46

* 47

* 48

* 49

* 50

* 51

* 52

* 53

* 54

* 55

* 56

* 57

* 58

* 59

* 60

* 61

* 62

* 63

* 64

* 65

* 66

* 67

* 68

* 69

* 70

* 71

* 72

* 73

* 74

* 75

* 76

* 77

* 78

* 79

* 80

* 81

* 82

* 83

* 84

* 85

* 86

* 87

* 88

* 89

* 90

* 91

* 92

* 93

* 94

* 95

* 96

* 97

* 98

* 99

* 100

* 101

* 102

* 103

* 104

* 105

* 106

* 107

* 108

* 109

* 110

* 111

* 112

5.get方法

`public V get(Object key) {

Node<K,V> e;

return (e = getNode(key)) == null ? null : e.value;

}

----------------------------------------------------------

final Node<K,V> getNode(Object key) {

Node<K,V>[] tab; //tab:引用当前hashmap的散列表

Node<K,V> first, e;//first:桶位中的头元素,e:临时node元素

int n, hash; //n:table数组长度

K k;

---------------------------------------------------------

if ((tab = table) != null && (n = tab.length) > 0 &&

(first = tab[(n - 1) & (hash = hash(key))]) != null) {

//定位出来的桶位元素,就是我们要get的元素

if (first.hash == hash && // always check first node

((k = first.key) == key || (key != null && key.equals(k))))

return first;

---------------------------------------------------------- //说明当前桶位不止一个元素,可能是树或者链表

if ((e = first.next) != null) {

if (first instanceof TreeNode)

return ((TreeNode<K,V>)first).getTreeNode(hash, key);

---------------------------------------------------------- //链表的情况

do {

if (e.hash == hash &&

((k = e.key) == key || (key != null && key.equals(k))))

return e;

} while ((e = e.next) != null);

}

}

return null;

}`

* 1

* 2

* 3

* 4

* 5

* 6

* 7

* 8

* 9

* 10

* 11

* 12

* 13

* 14

* 15

* 16

* 17

* 18

* 19

* 20

* 21

* 22

* 23

* 24

* 25

* 26

* 27

* 28

* 29

* 30

* 31

6.remove方法分析

`public V remove(Object key) {

Node<K,V> e;

return (e = removeNode(hash(key), key, null, false, true)) == null ?

null : e.value;

}

----------------------------------------------------------

final Node<K,V> removeNode(int hash, Object key, Object value,boolean matchValue, boolean movable) {

//tab:引用当前HashMap的散列表

//p:表示当前散列表的元素

//n:表示散列表数组的长度

//index:表示路由寻址的结果

Node<K,V>[] tab; Node<K,V> p; int n, index;

----------------------------------------------------------

if ((tab = table) != null && (n = tab.length) > 0 &&(p = tab[index = (n - 1) & hash]) != null) {

//说明路由的桶位是有数据的,需要进行查找操作,且删除

---------------------------------------------------------- //node:查找到的结果, e:当前node的下一个元素

Node<K,V> node = null, e; K k; V v;

//当前桶位中的元素即为要删除的元素

if (p.hash == hash &&

((k = p.key) == key || (key != null && key.equals(k))))

node = p;

---------------------------------------------------------- //当前桶位的元素为红黑树

else if ((e = p.next) != null) {

if (p instanceof TreeNode)

node=((TreeNode<K,V>)p).getTreeNode(hash, key);

---------------------------------------------------------- //当前桶位为链表

else {

do {

if (e.hash == hash &&

((k = e.key) == key ||

(key != null && key.equals(k)))) {

node = e;

break;

}

p = e;

} while ((e = e.next) != null);

}

}

---------------------------------------------------------- //判断node不为空的情况,说明按照key找到了要删除的数据

if (node != null && (!matchValue || (v = node.value) == value ||(value != null&&value.equals(v)))) {

//结果是红黑树

if (node instanceof TreeNode) ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);

//结果为单个元素

else if (node == p)

tab[index] = node.next;

//结果为链表

else

p.next = node.next;

++modCount;//修改次数自增

--size;//长度减少

afterNodeRemoval(node);

return node;

}

}

return null;

}`

* 1

* 2

* 3

* 4

* 5

* 6

* 7

* 8

* 9

* 10

* 11

* 12

* 13

* 14

* 15

* 16

* 17

* 18

* 19

* 20

* 21

* 22

* 23

* 24

* 25

* 26

* 27

* 28

* 29

* 30

* 31

* 32

* 33

* 34

* 35

* 36

* 37

* 38

* 39

* 40

* 41

* 42

* 43

* 44

* 45

* 46

* 47

* 48

* 49

* 50

* 51

* 52

* 53

* 54

* 55

* 56

7.replace方法分析

@Override

public boolean replace(K key, V oldValue, V newValue) {

Node<K,V> e; V v;

if ((e = getNode(key)) != null &&

((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {

e.value = newValue;

afterNodeAccess(e);

return true;

}

return false;

}

----------------------------------------------------------

@Override

public V replace(K key, V value) {

Node<K,V> e;

if ((e = getNode(key)) != null) {

V oldValue = e.value;

e.value = value;

afterNodeAccess(e);

return oldValue;

}

return null;

}

ll && v.equals(oldValue)))) {

e.value = newValue;

afterNodeAccess(e);

return true;

}

return false;

}

----------------------------------------------------------

@Override

public V replace(K key, V value) {

Node<K,V> e;

if ((e = getNode(key)) != null) {

V oldValue = e.value;

e.value = value;

afterNodeAccess(e);

return oldValue;

}

return null;

}

以上是 【Java】HashMap底层原理剖析 的全部内容, 来源链接: utcz.com/a/95596.html

回到顶部