Android:写了这么多代码,你真的理解泛型吗

generics

在我们的实际工作中 泛型(Generics) 是无处不在的,我们也写过不少,看到的更多,如,源码、开源框架... 随处可见,但是,我们真正理解泛型吗?理解多少呢?例如:BoxBox<Object>Box<?>Box<T>Box<? extends T>Box<? super T> 之间的区别是什么?本篇文章将会对 泛型(Generics) 进行全面的解析,让我们对泛型有更深入的理解。

本篇文章的示例代码放在 Github 上,所有知识点,如图:

Lucy 喜欢吃🍊(为什么要使用泛型)

首先,通过一个盘子装水果小故事来打开我们的泛型探索之旅(我们为什么要使用泛型),故事场景如下:

这个场景怎么用代码表现呢,我们来新建几个类,如下:

Fruit:水果类

package entity;

public class Fruit {

@Override

public String toString() {

return "This is Fruit";

}

}

Apple:苹果类,继承水果类

package entity;

public class Apple extends Fruit {

@Override

public String toString() {

return " Apple 🍎";

}

}

Orange:橘子类,继承水果类

package entity;

public class Orange extends Fruit {

@Override

public String toString() {

return " Orange 🍊";

}

}

Plate:水果盘接口

package entity;

public interface Plate<T> {

public void set(T t);

public T get();

}

FruitPlate:水果盘类,实现水果盘接口

package entity;

import java.util.ArrayList;

import java.util.List;

public class FruitPlate implements Plate {

private List items = new ArrayList(6);

@Override

public void set(Object o) {

items.add(o);

}

@Override

public Fruit get() {

int index = items.size() - 1;

if(index >= 0) return (Fruit) items.get(index);

return null;

}

}

AiFruitPlate:智能水果盘,实现水果盘接口

package entity;

import java.util.ArrayList;

import java.util.List;

/**

* 使用泛型类定义

* @param <T>

*/

public class AiFruitPlate<T> implements Plate<T> {

private List<T> fruits = new ArrayList<T>(6);

@Override

public void set(T t) {

fruits.add(t);

}

@Override

public T get() {

int index = fruits.size() - 1;

if(index >= 0) return fruits.get(index);

return null;

}

}

Person:人类

package entity;

public class Person {

}

Lucy:Lucy类,继承 Person 类,她拥有吃橘子的能力 eat

import entity.Orange;

import entity.Person;

public class Lucy extends Person {

public void eat(Orange orange) {

System.out.println("Lucy like eat" + orange);

}

}

James:James类,继承 Person 类,他拥有获取水果盘的能力 getAiFruitPlate

import entity.*;

public class James extends Person {

public FruitPlate getPlate() {

return new FruitPlate();

}

public AiFruitPlate getAiFruitPlate() {

return new AiFruitPlate();

}

public void addFruit(FruitPlate fruitPlate, Fruit fruit) {

fruitPlate.set(fruit);

}

public void add(AiFruitPlate<Orange> aiFruitPlate, Orange orange) {

aiFruitPlate.set(orange);

}

}

Scenario:测试类

import entity.*;

public class Scenario {

public static void main(String[] args) {

scenario1();

scenario2();

}

//没有使用泛型

private static void scenario1() {

James james = new James();

Lucy lucy = new Lucy();

FruitPlate fruitPlate = james.getPlate(); // James 拿出水果盘

james.addFruit(fruitPlate,new Orange()); // James 往水果盘里装橘子

lucy.eat((Orange) fruitPlate.get()); // 需要转型为 Orange

}

//使用了泛型

private static void scenario2() {

James james = new James();

Lucy lucy = new Lucy();

AiFruitPlate<Orange> aiFruitPlate = james.getAiFruitPlate(); // James 拿出智能水果盘(知道你需要装橘子)

james.add(aiFruitPlate, new Orange()); // James 往水果盘里装橘子(如果,装的不是橘子会提醒)

lucy.eat(aiFruitPlate.get()); // 不需要转型

}

}

运行结果,如下:

Lucy like eat  Orange 🍊

Lucy like eat Orange 🍊

Process finished with exit code 0

我们可以很明显的看出,使用了泛型之后,不需要类型转换,如果,我们把 scenario1() 方法,稍微改下,如下:

    private static void scenario1() {

James james = new James();

Lucy lucy = new Lucy();

FruitPlate fruitPlate = james.getPlate();

james.addFruit(fruitPlate,new Apple()); //new Orange() 改成 new Apple()

lucy.eat((Orange) fruitPlate.get());

}

编译器不会提示有问题,但是运行之后报错,如下:

Exception in thread "main" java.lang.ClassCastException: entity.Apple cannot be cast to entity.Orange

at Scenario.scenario1(Scenario.java:21)

at Scenario.main(Scenario.java:7)

Process finished with exit code 1

而,我们把 scenario2() (使用了泛型)做出同样的修改,如下:

    private static void scenario2() {

James james = new James();

Lucy lucy = new Lucy();

AiFruitPlate<Orange> aiFruitPlate = james.getAiFruitPlate();

james.add(aiFruitPlate, new Apple());

lucy.eat(aiFruitPlate.get());

}

编译器,会提示我们有错误,如图:

error

通过以上案例,很清晰的知道我们为什么要使用泛型,如下:

  • 消除类型转换
  • 在编译时进行更强的类型检查
  • 增加代码的复用性

泛型类(Generic Class)

泛型类是通过类型进行参数化的类,这样说可能不是很好理解,之后我们用代码演示。

普通类(A Simple Class)

首先,我们来定义一个普通的类,如下:

package definegeneric;

public class SimpleClass {

private Object object;

public Object getObject() {

return object;

}

public void setObject(Object object) {

this.object = object;

}

}

它的 getset 方法接受和返回一个 Object,所以,我们可以随意的传递任何类型。在编译时无法检查类型的使用,我们可以传入 Integer 且取出 Integer,也可以传入 String ,从而容易导致运行时错误。

泛型类(A Generic Class)

泛型类的定义格式如下:

class name<T1,T2,...,Tn>{

...

}

在类名之后的 <> 尖括号,称之为类型参数(类型变量),定义一个泛型类就是使用 <> 给它定义类型参数:T1、T2 ... Tn。

然后,我们把 SimpleClass 改成泛型类,如下:

package definegeneric;

public class GenericClass<T> {

private T t;

public T getT() {

return t;

}

public void setT(T t) {

this.t = t;

}

}

所以的 object 都替换成为 T,类型参数可以定义为任何的非基本类型,如:class类型、interface类型、数组类型、甚至是另一个类型参数。

调用和实例化泛型类型(nvoking and Instantiating a Generic Type)

要想使用泛型类,必须执行泛型类调用,如:

GenericClass<String> genericClass;

泛型类的调用类似于方法的调用(传递了一个参数),但是,我们没有将参数传递给方法,而是,将类型参数(String)传递给了 GenericClass 类本身。

此代码不会创建新的 GenericClass 对象,它只是声明了 genericClass 将保存对 String 的引用

要实例化此类,要使用 new 关键字,如:

GenericClass<String> genericClass = new GenericClass<String>();

或者

GenericClass<String> genericClass = new GenericClass<>();

在 Java SE 7 或更高的版本中,编译器可以从上下文推断出类型参数,因此,可以使用 <> 替换泛型类的构造函数所需的类型参数

类型参数命名规范(Type Parameter Naming Conventions)

我们的类型参数是否一定要写成 T 呢,按照规范,类型参数名称是单个大写字母。

常用的类型参数名称有,如:

类型参数含义
EElement
KKey
NNumber
VValue
S,U,V...2nd, 3rd, 4th type

多类型参数(Multiple Type Parameters)

泛型类可以有多个类型参数,如:

public interface MultipleGeneric<K,V> {

public K getKey();

public V getValue();

}

public class ImplMultipleGeneric<K, V> implements MultipleGeneric<K, V> {

private K key;

private V value;

public ImplMultipleGeneric(K key, V value) {

this.key = key;

this.value = value;

}

@Override

public K getKey() {

return key;

}

@Override

public V getValue() {

return value;

}

public static void main(String[] args) {

MultipleGeneric<String, Integer> m1 = new ImplMultipleGeneric<String, Integer>("per",6);

System.out.println("key:" + m1.getKey() + ", value:" + m1.getValue());

MultipleGeneric<String,String> m2 = new ImplMultipleGeneric<String, String>("per","lsy");

System.out.println("key:" + m2.getKey() + ", value:" + m2.getValue());

}

}

输出结果:

key:per, value:6

key:per, value:lsy

Process finished with exit code 0

如上代码,new ImplMultipleGenericK 实例化为 String,将 V 实例化为 Integer ,因此, ImplMultipleGeneric 构造函数参数类型分别为 StringInteger,在编写 new ImplMultipleGeneric 代码时,编辑器会自动填写 <> 的值

由于,Java 编译器会从声明 ImplMultipleGeneric 推断出 KV 的类型,因此我们可以简写为,如下:

MultipleGeneric<String, Integer> m1 = new ImplMultipleGeneric<>("per",6);

System.out.println("key:" + m1.getKey() + ", value:" + m1.getValue());

MultipleGeneric<String,String> m2 = new ImplMultipleGeneric<>("per","lsy");

System.out.println("key:" + m2.getKey() + ", value:" + m2.getValue());

泛型接口(Generic Interface)

定义泛型接口和定义泛型类相似(泛型类的技术可同用于泛型接口),如下:

interface name<T1,T2,...,Tn>{

...

}

我们来定义一个泛型接口,如下:

package definegeneric;

public interface Genertor<T> {

public T next();

}

那么,如何实现一个泛型接口呢,我们使用两种方式来实现泛型接口,如下:

使用泛型类,实现泛型接口,且不指定确切的类型参数,所以,实现的 next() 返回值自动变成 T

package definegeneric.impl;

import definegeneric.Genertor;

public class ImplGenertor<T> implements Genertor<T> {

@Override

public T next() {

return null;

}

}

使用普通类,实现泛型接口,且指定确切的类型参数为 String,所以,实现的 next() 返回值自动变成 String

package definegeneric.impl;

import definegeneric.Genertor;

public class ImplGenertor2 implements Genertor<String> {

@Override

public String next() {

return null;

}

}

泛型方法(Generic Methods)

泛型方法使用了类型参数的方法,泛型方法比较独立,可以声明在 普通类、泛型类、普通接口、泛型接口中。

泛型方法定义格式,如下:

public <K, V> boolean compare(Pair<K, V> p1, Pair<K, V> p2)

泛型方法的类型参数列表,在 <> 内,该列表必须在方法返回类型之前;对于静态的泛型方法,类型参数必须在 static 之后,方法返回类型之前。

普通类里定义泛型方法(Generic methods in a Simple Class)

我们在普通类中定义泛型方法,如下:

package methodgeneric;

public class MethodGeneric {

//定义一个泛型方法

public <T> T genericMethod(T...t) {

return t[t.length/2];

}

public static void main(String[] args) {

MethodGeneric methodGeneric = new MethodGeneric();

System.out.println(methodGeneric.<String>genericMethod("java","dart","kotlin"));

}

}

methodGeneric.<String>genericMethod("java","dart","kotlin") 通常可以省略掉 <> 的内容,编译器将推断出所需的类型,和调用普通方法一样,如:

methodGeneric.genericMethod("java","dart","kotlin")

泛型类里定义泛型方法(Generic methods in a Generic Class)

我们在泛型类中定义泛型方法,如下:

package methodgeneric;

public class MethodGeneric2 {

static class Fruit{

@Override

public String toString() {

return "fruit";

}

}

static class Apple extends Fruit {

@Override

public String toString() {

return "Apple";

}

}

static class Person{

@Override

public String toString() {

return "person";

}

}

//定义了泛型类

static class ShowClass<T> {

//定义了普通方法

public void show1(T t){

System.out.println(t.toString());

}

//定义了泛型方法

public <E> void show2(E e) {

System.out.println(e.toString());

}

//定义了泛型方法

public <T> void show3(T t) {

System.out.println(t.toString());

}

}

public static void main(String[] args) {

Apple apple = new Apple();

Person person = new Person();

ShowClass<Fruit> showClass = new ShowClass<>();

showClass.show1(apple); //可以放入 apple,因为 apple 是 fruit 的子类

showClass.show1(person); //此时,编译器会报错,因为 ShowClass<Fruit> 已经限定类型

showClass.show2(apple); //可以放入,泛型方法 <E> 可以是任何非基本类型

showClass.show2(person);//可以放入,泛型方法 <E> 可以是任何非基本类型

showClass.show3(apple); //可以放入,泛型方法 <T> 和泛型类中的 <T> 不是同一条 T,可以是任何非基本类型

showClass.show3(person); //可以放入,泛型方法 <T> 和泛型类中的 <T> 不是同一条 T,可以是任何非基本类型

}

}

在泛型类中定义泛型方法时,需要注意,泛型类里的泛型参数 <T> 和泛型方法里的泛型参数 <T> 不是同一个。

限定类型参数(Bounded Type Parameters)

我们经常看到类似 public <U extends Number> void inspect(U u) 的代码,<U extends Number> 就是限制类型参数,只对数字进行操作且只接受 Number 或其子类。

要声明一个限定的类型参数,需要在参数类型后加上 extends 关键字,然后是其上限类型(类或接口)。

限定类型参数的泛型类(Generic Class of Bounded Type Parameters)

泛型类也可以使用限定类型参数,如下:

package boundedgeneric;

public class BoundedClass<T extends Comparable> {

private T t;

public void setT(T t) {

this.t = t;

}

public T min(T outter){

if(this.t.compareTo(outter) > 0)

return outter;

else

return this.t;

}

public static void main(String[] args) {

BoundedClass<String> boundedClass = new BoundedClass<>(); //只能传入实现了 Comparable 接口的类型

boundedClass.setT("iOS");

System.out.println(boundedClass.min("android"));

}

}

限定类型参数的泛型方法(Generic methods of Bounded Type Parameters)

泛型方法也可以使用限定类型参数,如下:

package boundedgeneric;

public class BoundedGeneric {

public static <T extends Comparable> T min(T a, T b) {

if (a.compareTo(b) < 0)

return a;

else

return b;

}

public static void main(String[] args) {

System.out.println(BoundedGeneric.min(66,666));

}

}

多重限定(Multiple Bounds)

限定类型参数,也可以为多个限定,如:

<T extends B1 & B2 & B3>

多个限定参数,如果其中有类,类必须放在第一个位置,例如:

interface A { ... }

interface B { ... }

class C { ... }

class D <T extends C & A & B>

泛型,继承和子类型(Generics, Inheritance, and Subtypes)

在前面的盘子装水果小故事里我们已经创建好了一些水果类,如下:

public class Fruit {

@Override

public String toString() {

return "This is Fruit";

}

}

public class Apple extends Fruit {

@Override

public String toString() {

return " Apple 🍎";

}

}

public class Orange extends Fruit {

@Override

public String toString() {

return " Orange 🍊";

}

}

public class QIOrange extends Orange {

@Override

public String toString() {

return "qi Orange 🍊";

}

}

他们的继承关系,如图:

no-shadow

众所周知,我们可以把子类赋值给父类,例如:

Apple apple = new Apple();

Fruit fruit = new Fruit();

fruit = apple;

泛型也是如此,我们定义一个水果盘子的泛型类,如下:

public class FruitPlateGen<Fruit> implements Plate<Fruit> {

private List<Fruit> fruits = new ArrayList<>(6);

@Override

public void set(Fruit fruit) {

fruits.add(fruit);

}

@Override

public Fruit get() {

int index = fruits.size() - 1;

if(index >= 0) return fruits.get(index);

return null;

}

}

所以,是 Fruit 的子类都可以放入水果盘里,如下:

FruitPlateGen<Fruit> fruitPlate = new FruitPlateGen<Fruit>();

fruitPlate.set(new Apple());

fruitPlate.set(new Orange());

现在,James 可以获取盘子,如下:

public class James extends Person {

public FruitPlateGen getAiFruitPlateGen(FruitPlateGen<Fruit> plate) {

return new FruitPlateGen();

}

}

如是,James 想获取放橘子的盘子,如下:

James james = new James();

james.getAiFruitPlateGen(new FruitPlateGen<Fruit>()); //获取成功

james.getAiFruitPlateGen(new FruitPlateGen<Orange>()); //编译器报错

虽然,OrangeFruit 的子类,但是,FruitPlateGen<Orange> 不是 FruitPlateGen<Fruit> 的子类,所以,不能传递产生继承关系。

泛型类和子类型(Generic Classes and Subtyping)

我们可以通过继承(extends)或实现(implements)泛型类或接口,例如:

private static class ExtendFruitPlate<Orange> extends FruitPlateGen<Fruit> {

}

此时,ExtendFruitPlate<Orange> 就是 FruitPlateGen<Fruit> 的子类,James 再去拿盘子,就不会有错误提示:

james.getAiFruitPlateGen(new ExtendFruitPlate<Orange>());

通配符(Wildcards)

我们经常看到类似 List<? extends Number> 的代码,? 就是通配符,表示未知类型。

上限通配符(Upper Bounded Wildcards)

我们可以使用上限通配符来放宽对变量的限制,例如,上文提到的 FruitPlateGen<Fruit>FruitPlateGen<Orange>() 就可以使用上限通配符。

我们来改写一下 getAiFruitPlateGen 方法,如下:

public FruitPlateGen getAiFruitPlateGen2(FruitPlateGen<? extends Fruit> plate) {

return new FruitPlateGen();

}

这时候,James 想获取放橘子的盘子,如下:

James james = new James();

james.getAiFruitPlateGen2(new FruitPlateGen<Fruit>()); //获取成功

james.getAiFruitPlateGen2(new FruitPlateGen<Orange>()); //获取成功

上限通配符 FruitPlateGen<? extends Fruit> 匹配 FruitFruit 的任何子类型,所以,我们可以传入 AppleOrange 都没有问题。

下限通配符(Lower Bounded Wildcards)

上限通配符将未知类型限定为该类型或其子类型,使用 extends 关键字,而下限通配符将未知类型限定为该类型或其父类型,使用 super 关键字。

我们再来宽展一下 getAiFruitPlateGen 方法,如下:

public FruitPlateGen getAiFruitPlateGen3(FruitPlateGen<? super Apple> plate) {

return new FruitPlateGen();

}

这时候,James 只能获取 FruitPlateGen<Fruit>FruitPlateGen<Apple> 的盘子,如下:

James james = new James();

james.getAiFruitPlateGen3(new FruitPlateGen<Apple>());

james.getAiFruitPlateGen3(new FruitPlateGen<Fruit>());

下限通配符 FruitPlateGen<? super Apple> 匹配 AppleApple 的任何父类型,所以,我们可以传入 AppleFruit

通配符和子类型(Wildcards and Subtyping)

在 泛型,继承和子类型 章节有讲到,虽然,OrangeFruit 的子类,但是,FruitPlateGen<Orange> 不是 FruitPlateGen<Fruit> 的子类。但是,你可以使用通配符在泛型类或接口之间创建关系。

我们再来回顾下 Fruit 的继承关系,如图:

no-shadow

代码,如下:

Apple apple = new Apple();

Fruit fruit = apple;

这个代码是没有问题的,FruitApple 的父类,所以,可以把子类赋值给父类。

代码如下:

List<Apple> apples = new ArrayList<>();

List<Fruit> fruits = apples; // 编辑器报错

因为,List<Apple> 不是 List<Fruit> 的子类,实际上这两者无关,那么,它们的关系是什么?如图:

List<Apple>List<Fruit> 的公共父级是 List<?>

我们可以使用上下限通配符,在这些类之间创建关系,如下:

List<Apple> apples = new ArrayList<>();

List<? extends Fruit> fruits1 = apples; // OK

List<? super Apple> fruits2 = apples; // OK

下图展示了上下限通配符声明的几个类的关系,如图:

PECS原则(Producer extends Consumer super)

在上文中有 FruitPlateGen 水果盘子的类,我们尝试使用上下限通配符来实例化水果盘,代码如下:

Apple apple = new Apple();

Orange orange = new Orange();

Fruit fruit = new Fruit();

FruitPlateGen<? extends Fruit> fruitPlateGen = new FruitPlateGen<>();

fruitPlateGen.set(apple); // error

fruitPlateGen.set(orange); // error

fruitPlateGen.set(fruit); // error

Fruit fruit1 = fruitPlateGen.get(); // OK

Orange orange1 = fruitPlateGen.get(); // error

Apple apple1 = fruitPlateGen.get(); // error

上限通配符无法 set 数据,但是,可以 get 数据且只能 get 到其上限 Fruit,所以,上限通配符可以安全的访问数据。

在来看一下代码,如下:

FruitPlateGen<? super Apple> fruitPlateGen1 = new FruitPlateGen<>();

fruitPlateGen1.set(apple); // OK

fruitPlateGen1.set(orange); // error

fruitPlateGen1.set(fruit); // error

Object object = fruitPlateGen1.get(); // OK

Fruit fruit2 = fruitPlateGen1.get(); // error

Apple apple2 = fruitPlateGen1.get(); // error

Orange orange2 = fruitPlateGen1.get(); // error

下限通配符可以且只能 set 其下限 Apple,也可以 get 数据,但只能用 Object 接收(因为Object是所有类型的父类,这是一个特例),所以,下限通配符可以安全的写入数据。

所以,在使用上下限通配符时,可以遵循以下准则:

  • 如果你只需要从集合中获得类型T , 使用<? extends T>通配符
  • 如果你只需要将类型T放到集合中, 使用<? super T>通配符
  • 如果你既要获取又要放置元素,则不使用任何通配符

类型擦除(Type Erasure)

Java 语言使用类型擦除机制实现了泛型,类型擦除机制,如下:

  • 编译器会把所有的类型参数替换为其边界(上下限)或 Object,因此,编译出的字节码中只包含普通类、接口和方法。
  • 在必要时插入类型转换,已保持类型安全
  • 生成桥接方法以在扩展泛型类时保持多态性

泛型类型的擦除(Erasure of Generic Types)

Java 编译器在擦除过程中,会擦除所有类型参数,如果类型参数是有界的,则替换为第一个边界,如果是无界的,则替换为 Object。

我们定义了一个泛型类,代码如下:

public class Node<T> {

private T data;

private Node<T> next;

public Node(T data, Node<T> next) { this.data = data;

this.next = next;

}

public T getData() { return data; }

...

}

由于类型参数 T 是无界的,因此,Java 编译器将其替换为 Object,如下:

public class Node {

private Object data;

private Node next;

public Node(Object data, Node next) { this.data = data;

this.next = next;

}

public Object getData() { return data; }

...

}

我们再来定义一个有界的泛型类,代码如下:

public class Node<T extends Comparable<T>> {

private T data;

private Node<T> next;

public Node(T data, Node<T> next) { this.data = data;

this.next = next;

}

public T getData() { return data; }

...

}

Java 编译器其替换为第一个边界 Comparable,如下:

public class Node {

private Comparable data;

private Node next;

public Node(Comparable data, Node next) { this.data = data;

this.next = next;

}

public Comparable getData() { return data; }

...

}

泛型方法的擦除(Erasure of Generic Methods)

Java 编译器同样会擦除泛型方法中的类型参数,例如:

public static <T> int count(T[] anArray, T elem) {

int cnt = 0;

for (T e : anArray)

}

由于 T 是无界的,因此,Java 编译器将其替换为 Object,如下:

public static int count(Object[] anArray, Object elem) {

int cnt = 0;

for (Object e : anArray) if (e.equals(elem))

}

如下代码:

class Shape {  ...  }

class Circle extends Shape { ... }

class Rectangle extends Shape { ... }

有一个泛型方法,如下:

public static<T extends Shape> void draw(T shape){

...

}

Java 编译器将用第一个边界 Shape 替换 T,如下:

public static void draw(Shape shape){

...

}

桥接方法(Bridge Methods)

有时类型擦除会导致无法预料的情况,如下:

public class Node<T> {

public T data;

public Node(T data) { this.data = data; }

public void setData(T data) {

System.out.println("Node.setData");

this.data = data;

}

}

public class MyNode extends Node<Integer> {

public MyNode(Integer data) { super(data); }

public void setData(Integer data) {

System.out.println("MyNode.setData");

super.setData(data);

}

}

类型擦除后,代码如下:

public class Node {

public Object data;

public Node(Object data) { this.data = data; }

public void setData(Object data) {

System.out.println("Node.setData");

this.data = data;

}

}

public class MyNode extends Node {

public MyNode(Integer data) { super(data); }

public void setData(Integer data) {

System.out.println("MyNode.setData");

super.setData(data);

}

}

此时,Node 的方法变为 setData(Object data) 和 MyNode 的 setData(Integer data) 不会覆盖。

为了解决此问题并保留泛型类型的多态性,Java 编译器会生成一个桥接方法,如下:

class MyNode extends Node {

// 生成的桥接方法

public void setData(Object data) {

setData((Integer) data);

}

public void setData(Integer data) {

System.out.println("MyNode.setData");

super.setData(data);

}

...

}

这样 Node 的方法 setData(Object data) 和 MyNode 生成的桥接方法 setData(Object data) 可以完成方法的覆盖。

泛型的限制(Restrictions on Generics)

为了有效的使用泛型,需要考虑以下限制:

  • 无法实例化具有基本类型的泛型类型
  • 无法创建类型参数的实例
  • 无法声明类型为类型参数的静态字段
  • 无法将Casts或instanceof与参数化类型一起使用
  • 无法创建参数化类型的数组
  • 无法创建,捕获或抛出参数化类型的对象
  • 无法重载每个重载的形式参数类型都擦除为相同原始类型的方法

无法实例化具有基本类型的泛型类型

代码如下:

class Pair<K, V> {

private K key;

private V value;

public Pair(K key, V value) {

this.key = key;

this.value = value;

}

...

}

创建对象时,不能使用基本类型替换参数类型:

Pair<int, char> p = new Pair<>(8, 'a'); // error

无法创建类型参数的实例

代码如下:

public static <E> void append(List<E> list) {

E elem = new E(); // error

list.add(elem);

}

无法声明类型为类型参数的静态字段

代码如下:

public class MobileDevice<T> {

private static T os; // error

...

}

类的静态字段是所有非静态对象共享的变量,因此,不允许使用类型参数的静态字段。

无法将Casts或instanceof与参数化类型一起使用

代码如下:

public static <E> void rtti(List<E> list) {

if (list instanceof ArrayList<Integer>) { // error

...

}

}

Java 编译器会擦除所有类型参数,所有,无法验证在运行时使用的参数化类型。

无法创建参数化类型的数组

代码如下:

List<Integer>[] arrayOfLists = new List<Integer>[2]; // error

无法创建,捕获或抛出参数化类型的对象

代码如下:

class MathException<T> extends Exception {  ...  } // error

class QueueFullException<T> extends Throwable{ ... } // error

无法重载每个重载的形式参数类型都 擦除为相同原始类型的方法

代码如下:

public class Example {

public void print(Set<String> strSet) { }

public void print(Set<Integer> intSet) { }

}

print(Set<String> strSet)print(Set<Integer> intSet) 在类型擦除后是完全相同的类型,所以,无法重载。

最后,附上自己的博客和GitHub地址:如下

博客地址:https://h.lishaoy.net
GitHub地址:https://github.com/persilee

以上是 Android:写了这么多代码,你真的理解泛型吗 的全部内容, 来源链接: utcz.com/a/48331.html

回到顶部