numpy基础入门30分钟学会numpy[python高级教程]
Numpy简单介绍
1.Numpy是什么
很简单,Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数。如果接触过matlab、scilab,那么numpy很好入手。 在以下的代码示例中,总是先导入了numpy:(通用做法import numpu as np 简单输入)
>>> import numpy as np>>> print np.version.version
1.6.2
2. 多维数组
多维数组的类型是:numpy.ndarray。
使用numpy.array方法
以list或tuple变量为参数产生一维数组:
>>> print np.array([1,2,3,4])[1 2 3 4]
>>> print np.array((1.2,2,3,4))
[ 1.2 2. 3. 4. ]
>>> print type(np.array((1.2,2,3,4)))
<type 'numpy.ndarray'>
以list或tuple变量为元素产生二维数组或者多维数组:
>>> x = np.array(((1,2,3),(4,5,6)))>>> x
array([[1, 2, 3],
[4, 5, 6]])
>>> y = np.array([[1,2,3],[4,5,6]])
>>> y
array([[1, 2, 3],
[4, 5, 6]])
numpy数据类型设定与转换
numpy ndarray数据类型可以通过参数dtype 设定,而且可以使用astype转换类型,在处理文件时候这个会很实用,注意astype 调用会返回一个新的数组,也就是原始数据的一份拷贝。
python;toolbar:false">numeric_strings2 = np.array(['1.23','2.34','3.45'],dtype=np.string_)numeric_strings2
Out[32]:
array(['1.23', '2.34', '3.45'],
dtype='|S4')
numeric_strings2.astype(float)
Out[33]: array([ 1.23, 2.34, 3.45])
numpy索引与切片
index 和slicing :第一数值类似数组横坐标,第二个为纵坐标
>>> x[1,2]6
>>> y=x[:,1]
>>> y
array([2, 5])
涉及改变相关问题,我们改变上面y是否会改变x?这是特别需要关注的!
>>> yarray([2, 5])
>>> y[0] = 10
>>> y
array([10, 5])
>>> x
array([[ 1, 10, 3],
[ 4, 5, 6]])
通过上面可以发现改变y会改变x ,因而我们可以推断,y和x指向是同一块内存空间值,系统没有为y 新开辟空间把x值赋值过去。
arr = np.arange(10)
arr
Out[45]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
arr[4]
Out[46]: 4
arr[3:6]
Out[47]: array([3, 4, 5])
arr[3:6] = 12
arr
Out[49]: array([ 0, 1, 2, 12, 12, 12, 6, 7, 8, 9])
如上所示:当将一个标量赋值给切片时,该值会自动传播整个切片区域,这个跟列表最重要本质区别,数组切片是原始数组的视图,视图上任何修改直接反映到源数据上面。
思考为什么这么设计? Numpy 设计是为了处理大数据,如果切片采用数据复制话会产生极大的性能和内存消耗问题。
假如说需要对数组是一份副本而不是视图可以如下操作:
arr_copy = arr[3:6].copy()arr_copy[:]=24
arr_copy
Out[54]: array([24, 24, 24])
arr
Out[55]: array([ 0, 1, 2, 12, 12, 12, 6, 7, 8, 9])
再看下对list 切片修改
l=range(10)
l
Out[35]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
l[5:8] = 12
Traceback (most recent call last):
File "<ipython-input-36-022af3ddcc9b>", line 1, in <module>
l[5:8] = 12
TypeError: can only assign an iterable
l1= l[5:8]
l1
Out[38]: [5, 6, 7]
l1[0]=12
l1
Out[40]: [12, 6, 7]
l
Out[41]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
这里设计到python 中深浅拷贝,其中切片属于浅拷贝
多维数组索引、切片
arr2d = np.arange(1,10).reshape(3,3)
arr2d
Out[57]:
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
arr2d[2]
Out[58]: array([7, 8, 9])
arr2d[0][2]
Out[59]: 3
arr2d[0,2]
Out[60]: 3
布尔型索引
这种类型在实际代码中出现比较多,关注下。
names = np.array(['Bob','joe','Bob','will'])names == 'Bob'
Out[70]: array([ True, False, True, False], dtype=bool)
dataOut[73]:
array([[ 0.36762706, -1.55668952, 0.84316735, -0.116842 ],
[ 1.34023966, 1.12766186, 1.12507441, -0.68689309],
[ 1.27392366, -0.43399617, -0.80444728, 1.60731881],
[ 0.23361565, 1.38772715, 0.69129479, -1.19228023],
[ 0.51353082, 0.17696698, -0.06753478, 0.80448168],
[ 0.21773096, 0.60582802, -0.46446071, 0.83131122],
[ 0.50569072, 0.04431685, -0.69358155, -0.9629124 ]])
data[data < 0] = 0
data
Out[75]:
array([[ 0.36762706, 0. , 0.84316735, 0. ],
[ 1.34023966, 1.12766186, 1.12507441, 0. ],
[ 1.27392366, 0. , 0. , 1.60731881],
[ 0.23361565, 1.38772715, 0.69129479, 0. ],
[ 0.51353082, 0.17696698, 0. , 0.80448168],
[ 0.21773096, 0.60582802, 0. , 0.83131122],
[ 0.50569072, 0.04431685, 0. , 0. ]])
上面展示通过布尔值来设置值的手段。
数组文件输入输出
在跑实验时经常需要用到读取文件中的数据,其实在numpy中已经有成熟函数封装好了可以使用
将数组以二进制形式格式保存到磁盘,np.save 、np.load 函数是读写磁盘的两个主要函数,默认情况下,数组以未压缩的原始二进制格式保存在扩展名为.npy的文件中
arr = np.arange(10)np.save('some_array',arr)
np.load('some_array.npy')
Out[80]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
存取文本文件:
文本中存放是聚类需要数据,直接可以方便读取到numpy array中,省去一行行读文件繁琐。
arr = np.loadtxt('dataMatrix.txt',delimiter=' ')arr
Out[82]:
array([[ 1. , 1. , 1. , 1. , 1. ,
0.8125 ],
[ 0.52882353, 0.56271186, 0.48220588, 0.53384615, 0.61651376,
0.58285714],
[ 0. , 0. , 0. , 1. , 1. ,
1. ],
[ 1. , 0.92857143, 0.91857143, 1. , 1. ,
1. ],
[ 1. , 1. , 1. , 1. , 1. ,
1. ],
[ 0.05285714, 0.10304348, 0.068 , 0.06512821, 0.05492308,
0.05244898],
[ 0.04803279, 0.08203125, 0.05516667, 0.05517241, 0.04953488,
0.05591549],
[ 0.04803279, 0.08203125, 0.05516667, 0.05517241, 0.04953488,
0.05591549]])
np.savetxt 执行相反的操作,这两个函数在跑实验加载数据时可以提供很多便利!!!
使用numpy.arange方法
>>> print np.arange(15)[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]
>>> print type(np.arange(15))
<type 'numpy.ndarray'>
>>> print np.arange(15).reshape(3,5)
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]]
>>> print type(np.arange(15).reshape(3,5))
<type 'numpy.ndarray'>
使用numpy.linspace方法
例如,在从1到10中产生20个数:
>>> print np.linspace(1,10,20)[ 1. 1.47368421 1.94736842 2.42105263 2.89473684
3.36842105 3.84210526 4.31578947 4.78947368 5.26315789
5.73684211 6.21052632 6.68421053 7.15789474 7.63157895
8.10526316 8.57894737 9.05263158 9.52631579 10. ]
使用numpy.zeros,numpy.ones,numpy.eye等方法可以构造特定的矩阵
>>> print np.zeros((3,4))[[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]]
>>> print np.ones((3,4))
[[ 1. 1. 1. 1.]
[ 1. 1. 1. 1.]
[ 1. 1. 1. 1.]]
>>> print np.eye(3)
[[ 1. 0. 0.]
[ 0. 1. 0.]
[ 0. 0. 1.]]
获取数组的属性
>>> a = np.zeros((2,2,2))>>> print a.ndim #数组的维数
3
>>> print a.shape #数组每一维的大小
(2, 2, 2)
>>> print a.size #数组的元素数
8
>>> print a.dtype #元素类型
float64
>>> print a.itemsize #每个元素所占的字节数
8
合并数组
使用numpy下的vstack(垂直方向)和hstack(水平方向)函数:
>>> a = np.ones((2,2))>>> b = np.eye(2)
>>> print np.vstack((a,b))
[[ 1. 1.]
[ 1. 1.]
[ 1. 0.]
[ 0. 1.]]
>>> print np.hstack((a,b))
[[ 1. 1. 1. 0.]
[ 1. 1. 0. 1.]]
看一下这两个函数有没有涉及到浅拷贝这种问题:
>>> c = np.hstack((a,b))>>> print c
[[ 1. 1. 1. 0.]
[ 1. 1. 0. 1.]]
>>> a[1,1] = 5
>>> b[1,1] = 5
>>> print c
[[ 1. 1. 1. 0.]
[ 1. 1. 0. 1.]]
通过上面可以知道,这里进行是深拷贝,而不是引用指向同一位置的浅拷贝。
深拷贝数组
数组对象自带了浅拷贝和深拷贝的方法,但是一般用深拷贝多一些:
>>> a = np.ones((2,2))>>> b = a
>>> b is a
True
>>> c = a.copy() #深拷贝
>>> c is a
False
基本的矩阵运算
转置:
>>> a = np.array([[1,0],[2,3]])>>> print a
[[1 0]
[2 3]]
>>> print a.transpose()
[[1 2]
[0 3]]
numpy.linalg模块中有很多关于矩阵运算的方法:
特征值、特征向量:
>>> a = np.array([[1,0],[2,3]])>>> nplg.eig(a)
(array([ 3., 1.]), array([[ 0. , 0.70710678],
[ 1. , -0.70710678]]))
以上是 numpy基础入门30分钟学会numpy[python高级教程] 的全部内容, 来源链接: utcz.com/z/540186.html