Python实现语音识别和语音合成

python

声音的本质是震动,震动的本质是位移关于时间的函数,波形文件(.wav)中记录了不同采样时刻的位移。

通过傅里叶变换,可以将时间域的声音函数分解为一系列不同频率的正弦函数的叠加,通过频率谱线的特殊分布,建立音频内容和文本的对应关系,以此作为模型训练的基础。

案例:画出语音信号的波形和频率分布

python"># -*- encoding:utf-8 -*-

import numpy as np

import numpy.fft as nf

import scipy.io.wavfile as wf

import matplotlib.pyplot as plt

sample_rate, sigs = wf.read("../machine_learning_date/freq.wav")

print(sample_rate) # 8000采样率

print(sigs.shape) # (3251,)

sigs = sigs / (2 ** 15) # 归一化

times = np.arange(len(sigs)) / sample_rate

freqs = nf.fftfreq(sigs.size, 1 / sample_rate)

ffts = nf.fft(sigs)

pows = np.abs(ffts)

plt.figure("Audio")

plt.subplot(121)

plt.title("Time Domain")

plt.xlabel("Time", fontsize=12)

plt.ylabel("Signal", fontsize=12)

plt.tick_params(labelsize=10)

plt.grid(linestyle=":")

plt.plot(times, sigs, c="dodgerblue", label="Signal")

plt.legend()

plt.subplot(122)

plt.title("Frequency Domain")

plt.xlabel("Frequency", fontsize=12)

plt.ylabel("Power", fontsize=12)

plt.tick_params(labelsize=10)

plt.grid(linestyle=":")

plt.plot(freqs[freqs >= 0], pows[freqs >= 0], c="orangered", label="Power")

plt.legend()

plt.tight_layout()

plt.show()


语音识别

梅尔频率倒谱系数(MFCC)通过与声音内容密切相关的13个特殊频率所对应的能量分布,可以使用梅尔频率倒谱系数矩阵作为语音识别的特征。基于隐马尔科夫模型进行模式识别,找到测试样本最匹配的声音模型,从而识别语音内容。

MFCC

梅尔频率倒谱系数相关API:

import scipy.io.wavfile as wf

import python_speech_features as sf

sample_rate, sigs = wf.read("../data/freq.wav")

mfcc = sf.mfcc(sigs, sample_rate)

案例:画出MFCC矩阵:

python -m pip install python_speech_features

import scipy.io.wavfile as wf

import python_speech_features as sf

import matplotlib.pyplot as mp

sample_rate, sigs = wf.read(

"../ml_data/speeches/training/banana/banana01.wav")

mfcc = sf.mfcc(sigs, sample_rate)

mp.matshow(mfcc.T, cmap="gist_rainbow")

mp.show()


隐马尔科夫模型

隐马尔科夫模型相关API:

import hmmlearn.hmm as hl

model = hl.GaussianHMM(n_components=4, covariance_type="diag", n_iter=1000)

# n_components: 用几个高斯分布函数拟合样本数据

# covariance_type: 相关矩阵的辅对角线进行相关性比较

# n_iter: 最大迭代上限

model.fit(mfccs) # 使用模型匹配测试mfcc矩阵的分值 score = model.score(test_mfccs)

案例:训练training文件夹下的音频,对testing文件夹下的音频文件做分类

语音识别设计思路

1、读取training文件夹中的训练音频样本,每个音频对应一个mfcc矩阵,每个mfcc都有一个类别(apple)

import os

import numpy as np

import scipy.io.wavfile as wf

import python_speech_features as sf

import hmmlearn.hmm as hl

# 1. 读取training文件夹中的训练音频样本,每个音频对应一个mfcc矩阵,每个mfcc都有一个类别(apple...)。

def search_file(directory):

"""

:param directory: 训练音频的路径

:return: 字典{"apple":[url, url, url ... ], "banana":[...]}

"""

# 使传过来的directory匹配当前操作系统

directory = os.path.normpath(directory)

objects = {}

# curdir:当前目录

# subdirs: 当前目录下的所有子目录

# files: 当前目录下的所有文件名

for curdir, subdirs, files in os.walk(directory):

for file in files:

if file.endswith(".wav"):

label = curdir.split(os.path.sep)[-1] # os.path.sep为路径分隔符

if label not in objects:

objects[label] = []

# 把路径添加到label对应的列表中

path = os.path.join(curdir, file)

objects[label].append(path)

return objects

# 读取训练集数据

train_samples = search_file("../machine_learning_date/speeches/training")

2、把所有类别为apple的mfcc合并在一起,形成训练集。

训练集:

train_x:[mfcc1,mfcc2,mfcc3,...],[mfcc1,mfcc2,mfcc3,...]...

train_y:[apple],[banana]...

由上述训练集样本可以训练一个用于匹配apple的HMM。

#Python学习交流群:778463939

train_x, train_y = [], []

# 遍历字典

for label, filenames in train_samples.items():

# [("apple", ["url1,,url2..."])

# [("banana"),("url1,url2,url3...")]...

mfccs = np.array([])

for filename in filenames:

sample_rate, sigs = wf.read(filename)

mfcc = sf.mfcc(sigs, sample_rate)

if len(mfccs) == 0:

mfccs = mfcc

else:

mfccs = np.append(mfccs, mfcc, axis=0)

train_x.append(mfccs)

train_y.append(label)

3、训练7个HMM分别对应每个水果类别。 保存在列表中。

# 训练模型,有7个句子,创建了7个模型

models = {}

for mfccs, label in zip(train_x, train_y):

model = hl.GaussianHMM(n_components=4, covariance_type="diag", n_iter=1000)

models[label] = model.fit(mfccs) # # {"apple":object, "banana":object ...}

4、读取testing文件夹中的测试样本,整理测试样本

测试集数据:

test_x: [mfcc1, mfcc2, mfcc3...]

test_y :[apple, banana, lime]

# 读取测试集数据

test_samples = search_file("../machine_learning_date/speeches/testing")

test_x, test_y = [], []

for label, filenames in test_samples.items():

mfccs = np.array([])

for filename in filenames:

sample_rate, sigs = wf.read(filename)

mfcc = sf.mfcc(sigs, sample_rate)

if len(mfccs) == 0:

mfccs = mfcc

else:

mfccs = np.append(mfccs, mfcc, axis=0)

test_x.append(mfccs)

test_y.append(label)

5、针对每一个测试样本:

  1、分别使用7个HMM模型,对测试样本计算score得分。

  2、取7个模型中得分最高的模型所属类别作为预测类别。

pred_test_y = []

for mfccs in test_x:

# 判断mfccs与哪一个HMM模型更加匹配

best_score, best_label = None, None

# 遍历7个模型

for label, model in models.items():

score = model.score(mfccs)

if (best_score is None) or (best_score < score):

best_score = score

best_label = label

pred_test_y.append(best_label)

print(test_y) # ["apple", "banana", "kiwi", "lime", "orange", "peach", "pineapple"]

print(pred_test_y) # ["apple", "banana", "kiwi", "lime", "orange", "peach", "pineapple"]

声音合成

根据需求获取某个声音的模型频域数据,根据业务需要可以修改模型数据,逆向生成时域数据,完成声音的合成。

案例,(数据集12.json地址):

import json

import numpy as np

import scipy.io.wavfile as wf

with open("../data/12.json", "r") as f:

freqs = json.loads(f.read())

tones = [

("G5", 1.5),

("A5", 0.5),

("G5", 1.5),

("E5", 0.5),

("D5", 0.5),

("E5", 0.25),

("D5", 0.25),

("C5", 0.5),

("A4", 0.5),

("C5", 0.75)]

sample_rate = 44100

music = np.empty(shape=1)

for tone, duration in tones:

times = np.linspace(0, duration, duration * sample_rate)

sound = np.sin(2 * np.pi * freqs[tone] * times)

music = np.append(music, sound)

music *= 2 ** 15

music = music.astype(np.int16)

wf.write("../data/music.wav", sample_rate, music)

以上是 Python实现语音识别和语音合成 的全部内容, 来源链接: utcz.com/z/530280.html

回到顶部