用数据来对比下《哪吒》和《姜子牙》,差距逐渐加大

python

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理

以下文章来源于数据分析与统计学之美,作者 不正经的kimol君

前言

 

随着国内疫情得到有效控制,每个地区的电影院都陆陆续续的开放了,而很多本应该在春节档上映的电影因为疫情撤档,现在也重新上映了。

想必和不少小伙伴一样,我一直对《姜子牙》满怀期待。于是,国庆第2天我便杀入影院。而关于《姜子牙》的评价呈现了两极分化,而它也经常被拿来和去年上映的《哪吒》对比。关于电影本身,我不做过多评价,主要是从数据的角度出发,把《姜子牙》和《哪吒》进行一个对比分析。

 

一、票房对比分析

为了使得数据统一,我选取上映的前9日的票房数据(将持续更新):

 

注:票房数据来源于网络,不保证完全准确。将其存于本地excel表格中,命名为“票房数据.xlsx”。

2.票房走势分析

利用pandas库对票房数据进行分析,并绘制折线图:

import pandas as pd

import matplotlib.pyplot as plt

# 票房分析

plt.rcParams["font.sans-serif"] = ["SimHei"] # 用来正常显示中文标签

data = pd.read_excel("票房数据.xlsx",index_col=0)

data.plot(style=".-.")

plt.title("票房数据")

plt.ylabel("票房(亿元)")

plt.xlabel("上映时间")

plt.savefig("票房数据.png")

结果如下:

 

从图可以看出(仅代表个人观点):

  • 1 首映当日《姜子牙》票房明显高于《哪吒》。这大概是源于观众的期待,这也说明前期的宣传工作做到位了;
  • 2 从走势来看,《姜子牙》呈现出明显下滑。这大概是因为上映后口碑上出现了两级分化,电影本身没有到达观众原本的期待;
  • 3 从走势来看,《哪吒》后续走势强劲有力。这大概是因为上映后《哪吒》作为国产动漫的代表口口相传,吸引了越来越多的观众。

二、评价对比分析

这一部分主要是对观众的影评进行分析,评价数据来源于某瓣。

1.爬取影评

在网站简单搜索之后可以发现一个电影短评的接口:

https://movie.douban.com/subject/26794435/comments?start=20&limit=20&status=P&sort=new_score

其中,26794435表示电影的编号l;start参数表示评论起始位置;limit表示每次请求的评论数。

1.1获取评论页面

def get_comment(mid,page):

"""

获得评论页面的HTML

"""

start = (page-1)*20

url = "https://movie.douban.com/subject/%s/comments?start=%d&limit=20&status=P&sort=new_score"%(mid,start)

headers = {"User-Agent": "Mozilla/5.0 (Windows NT 6.3; Win64; x64; rv:81.0) Gecko/20100101 Firefox/81.0",

"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",

"Accept-Language": "zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2",

"Connection": "keep-alive",

"Upgrade-Insecure-Requests": "1"}

cookies = {}

res = requests.get(url,headers=headers,cookies=cookies)

html = res.text

return html

## 注意:请求需要带上登陆后的cookies,否则将只能获取10页的评论。

1.2 解析页面中的评论

def parse_comment(html):

"""

解析HTML中的评论

"""

comment = re.findall("<span class="short">(.*?)</span>",html)

return comment

1.3 定义爬取函数

def crawl_comment(mid,N,name):

"""

爬取指定页数的评论,并保存在本地

"""

comments = []

for p in range(1,N+1):

html = get_comment(mid,p)

comment = parse_comment(html)

comments.extend(comment)

print("《%s》第%d页评论爬取完成(%d条)"%(name,p,len(comment)))

time.sleep(random.uniform(3,5))

with open("%s.txt"%name,"w") as f:

f.write(json.dumps(comments))

## 注意:time.sleep()很重要,否则请求过于频繁将触发安全机制,导致403

1.4 完整代码

import re

import time

import json

import random

import requests

# 定义相关函数

def get_comment(mid,page):

"""

获得评论页面的HTML

"""

start = (page-1)*20

url = "https://movie.douban.com/subject/%s/comments?start=%d&limit=20&status=P&sort=new_score"%(mid,start)

headers = {"User-Agent": "Mozilla/5.0 (Windows NT 6.3; Win64; x64; rv:81.0) Gecko/20100101 Firefox/81.0",

"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",

"Accept-Language": "zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2",

"Connection": "keep-alive",

"Upgrade-Insecure-Requests": "1"}

cookies = {}

res = requests.get(url,headers=headers,cookies=cookies)

html = res.text

return html

def parse_comment(html):

"""

解析HTML中的评论

"""

comment = re.findall("<span class="short">(.*?)</span>",html)

return comment

def crawl_comment(mid,N,name):

"""

爬取指定页数的评论,并保存在本地

"""

comments = []

for p in range(1,N+1):

html = get_comment(mid,p)

comment = parse_comment(html)

comments.extend(comment)

print("《%s》第%d页评论爬取完成(%d条)"%(name,p,len(comment)))

time.sleep(random.uniform(3,5))

with open("%s.txt"%name,"w") as f:

f.write(json.dumps(comments))

# 爬取姜子牙评论

crawl_comment("25907124",25,"姜子牙")

# 爬取哪吒评论

crawl_comment("26794435",25,"哪吒")

2.词云分析

利用python的jieba库和wordcloud库对评论进行分析,绘制出词云。其中相应库的安装如下:

pip install jieba

pip install wordcloud

2.1 完整代码

先利用jieba对评论进行分词处理,再利用wordcloud对词频进行统计并绘制出词云。

import json

import jieba

from wordcloud import WordCloud

# 定义相关函数

def create_wordcloud(comments,name):

"""

根据评论列表创建词云

"""

content = "".join(comments)

wl = jieba.cut(content,cut_all=True)

wl_space_split = "".join(wl)

wc = WordCloud("simhei.ttf",

background_color="white", # 背景颜色

width=1000,

height=600,).generate(wl_space_split)

wc.to_file("%s.png"%name)

# 词云数据分析

with open("姜子牙.txt","r") as f:

comments_jiang = json.loads(f.read())

create_wordcloud(comments_jiang,"姜子牙评论")

with open("哪吒.txt","r") as f:

comments_ne = json.loads(f.read())

create_wordcloud(comments_ne,"哪吒评论")

2.2 结果展示

《姜子牙》评论词云:

 

可以看出:在关于《姜子牙》的评论中,往往会伴随着与《哪吒》的比较。同时,其中的剧情、故事也是大家比较关注的一个问题。

《哪吒》评论词云:

 

可以看出:在关于《哪吒》的评论中,大家往往涉及到了国产、动画等关键词,而这也与大家对《哪吒》的主流定位不谋而合。

以上是 用数据来对比下《哪吒》和《姜子牙》,差距逐渐加大 的全部内容, 来源链接: utcz.com/z/530012.html

回到顶部