pythonpca怎么用

python

from sklearn.decomposition import PCA

PCA

主成分分析(Principal Components Analysis),简称PCA,是一种数据降维技术,用于数据预处理。

PCA的一般步骤是:先对原始数据零均值化,然后求协方差矩阵,接着对协方差矩阵求特征向量和特征值,这些特征向量组成了新的特征空间。

sklearn.decomposition.PCA(n_components=None, copy=True, whiten=False)

参数:

n_components:

意义:PCA算法中所要保留的主成分个数n,也即保留下来的特征个数n

类型:int 或者 string,缺省时默认为None,所有成分被保留。

    赋值为int,比如n_components=1,将把原始数据降到一个维度。

    赋值为string,比如n_components='mle',将自动选取特征个数n,使得满足所要求的方差百分比。

copy:

类型:bool,True或者False,缺省时默认为True。

意义:表示是否在运行算法时,将原始训练数据复制一份。若为True,则运行PCA算法后,原始训练数据的值不会有任何改变,

因为是在原始数据的副本上进行运算;若为False,则运行PCA算法后,原始训练数据的值会改,因为是在原始数据上进行降维计算。

whiten:

类型:bool,缺省时默认为False。

意义:白化,使得每个特征具有相同的方差。

PCA属性:

components_ :返回具有最大方差的成分。

explained_variance_ratio_:返回 所保留的n个成分各自的方差百分比。

n_components_:返回所保留的成分个数n。

mean_:

noise_variance_:

PCA方法:

1、fit(X,y=None)

fit(X),表示用数据X来训练PCA模型。

函数返回值:调用fit方法的对象本身。比如pca.fit(X),表示用X对pca这个对象进行训练。

拓展:fit()可以说是scikit-learn中通用的方法,每个需要训练的算法都会有fit()方法,它其实就是算法中的“训练”这一步骤。因为PCA是无监督学习算法,此处y自然等于None。

2、fit_transform(X)

用X来训练PCA模型,同时返回降维后的数据。

newX=pca.fit_transform(X),newX就是降维后的数据。

3、inverse_transform(X)

将降维后的数据转换成原始数据,X=pca.inverse_transform(newX)

4、transform(X)

将数据X转换成降维后的数据。当模型训练好后,对于新输入的数据,都可以用transform方法来降维。

此外,还有get_covariance()、get_precision()、get_params(deep=True)、score(X, y=None)等方法,以后用到再补充吧。

实例:

import numpy as np

from sklearn.decomposition import PCA

X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])

pca = PCA(n_components=2)

newX = pca.fit_transform(X)     #等价于pca.fit(X) pca.transform(X)

invX = pca.inverse_transform(X)  #将降维后的数据转换成原始数据

print(X)

     [[-1 -1]

     [-2 -1]

     [-3 -2]

     [ 1 1]

     [ 2 1]

     [ 3 2]]

print(newX)

    array([[ 1.38340578,  0.2935787],

         [ 2.22189802, -0.25133484],

         [ 3.6053038 , 0.04224385],

         [-1.38340578,  -0.2935787],

         [-2.22189802, 0.25133484],

         [-3.6053038 , -0.04224385]])

print(invX)

    [[-1 -1]

     [-2 -1]

     [-3 -2]

     [ 1 1]

     [ 2 1]

     [ 3 2]]

print(pca.explained_variance_ratio_)

    [ 0.99244289  0.00755711]

我们所训练的pca对象的n_components值为2,即保留2个特征,第一个特征占所有特征的方差百分比为0.99244289,意味着几乎保留了所有的信息。即第一个特征可以99.24%表达整个数据集,因此我们可以降到1维:

pca = PCA(n_components=1)

newX = pca.fit_transform(X)

print(pca.explained_variance_ratio_)

[ 0.99244289]

众多python教程,尽在网,欢迎在线学习!

以上是 pythonpca怎么用 的全部内容, 来源链接: utcz.com/z/523803.html

回到顶部