vmalloc函数

编程

kmalloc、vmalloc和malloc这三个常用的API函数具有相当的分量,三者看上去很相似,但在实现上大有讲究。kmalloc基于slab分配器,slab缓冲区建立在一个连续的物理地址的大块内存之上,所以缓冲对象也是物理地址连续的。如果在内核中不需要连续的物理地址,而仅仅需要内核空间里连续的虚拟地址的内存块,该如何处理呢?这时vmalloc()就派上用场了。

vmalloc()函数声明如下:

[mm/vmalloc.c]

/**

* vmalloc - allocate virtually contiguous memory

* @size: allocation size

* Allocate enough pages to cover @size from the page level

* allocator and map them into contiguous kernel virtual space.

*

* For tight control over page level allocator and protection flags

* use __vmalloc() instead.

*/

void *vmalloc(unsigned long size)

{

return __vmalloc_node_flags(size, NUMA_NO_NODE,

GFP_KERNEL | __GFP_HIGHMEM);

}

vmalloc使用的分配掩码是“GFP_KERNEL|__GFP_HIGHMEM”,说明会优先使用高端内存High Memory。

static void *__vmalloc_node(unsigned long size, unsigned long align,

gfp_t gfp_mask, pgprot_t prot,

int node, const void *caller)

{

return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,

gfp_mask, prot, 0, node, caller);

}

这里的VMALLOC_START和VMALLOC_END是vmalloc中最重要的宏,这两个宏定义在arch/arm/include/pgtable.h头文件中。ARM64架构定义在arch/arm64/include/asm/pgtable.h头文件中。VMALLOC_START是vmalloc区域的开始地址,它是在High_memory指定的高端内存开始地址再加上8MB大小的安全区域(VMALLOC_OFFSET)。在ARM Vexpress平台杀昂,vmalloc的内存范围是从0xf000_000到0xff00_0000,大小为240MB,high_memory全局变量的计算在sanity_check_meminfo()函数中。

[arch/arm/include/pgtable.h]

#define VMALLOC_OFFSET (8*1024*1024)

#define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))

#define VMALLOC_END 0xff000000UL

[vmalloc()-> __vmalloc_node() -> __vmalloc_node_range()]

void *__vmalloc_node_range(unsigned long size, unsigned long align,

unsigned long start, unsigned long end, gfp_t gfp_mask,

pgprot_t prot, unsigned long vm_flags, int node,

const void *caller)

{

struct vm_struct *area;

void *addr;

unsigned long real_size = size;

size = PAGE_ALIGN(size);

if (!size || (size >> PAGE_SHIFT) > totalram_pages)

goto fail;

area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |

vm_flags, start, end, node, gfp_mask, caller);

if (!area)

goto fail;

addr = __vmalloc_area_node(area, gfp_mask, prot, node);

if (!addr)

return NULL;

/*

* In this function, newly allocated vm_struct has VM_UNINITIALIZED

* flag. It means that vm_struct is not fully initialized.

* Now, it is fully initialized, so remove this flag here.

*/

clear_vm_uninitialized_flag(area);

/*

* A ref_count = 2 is needed because vm_struct allocated in

* __get_vm_area_node() contains a reference to the virtual address of

* the vmalloc"ed block.

*/

kmemleak_alloc(addr, real_size, 2, gfp_mask);

return addr;

fail:

warn_alloc_failed(gfp_mask, 0,

"vmalloc: allocation failure: %lu bytes

",

real_size);

return NULL;

}

在__vmalloc_node_range()函数中,第9行代码vmalloc分配的大小要以页面大小对齐。如果vmalloc要分配的大小为10Byte,那么vmalloc还是会分配出一个页,剩下的4086Byte就浪费了。

第10行代码,判断要分配的内存大小不能为0或者不能大于系统的所有内存。

[vmalloc->__vmalloc_node_range()->__get_vm_area_node()]

static struct vm_struct *__get_vm_area_node(unsigned long size,

unsigned long align, unsigned long flags, unsigned long start,

unsigned long end, int node, gfp_t gfp_mask, const void *caller)

{

struct vmap_area *va;

struct vm_struct *area;

BUG_ON(in_interrupt());

if (flags & VM_IOREMAP)

align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER);

size = PAGE_ALIGN(size);

if (unlikely(!size))

return NULL;

area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);

if (unlikely(!area))

return NULL;

if (!(flags & VM_NO_GUARD))

size += PAGE_SIZE;

va = alloc_vmap_area(size, align, start, end, node, gfp_mask);

if (IS_ERR(va)) {

kfree(area);

return NULL;

}

setup_vmalloc_vm(area, va, flags, caller);

return area;

}

在__get_vm_area_node()函数中,第7行代码确保当前不在中断上下文中,因为这个函数有可能睡眠。

第8行代码又计算了一次对齐。

第10行代码分配了一个struct vm_struct数据结构来描述这个vmalloc区域。

第12行代码,如果flags中没有定义VM_NO_GUARD标志位,那么要多分配一个页来做安全垫,例如我们要分配4KB的大小内存,vmalloc分配了8KB的内存块。

下面重点要看下第15行代码的alloc_vmap_area()函数。

/*

* Allocate a region of KVA of the specified size and alignment, within the

* vstart and vend.

*/

static struct vmap_area *alloc_vmap_area(unsigned long size,

unsigned long align,

unsigned long vstart, unsigned long vend,

int node, gfp_t gfp_mask)

{

struct vmap_area *va;

struct rb_node *n;

unsigned long addr;

int purged = 0;

struct vmap_area *first;

BUG_ON(!size);

BUG_ON(size & ~PAGE_MASK);

BUG_ON(!is_power_of_2(align));

va = kmalloc_node(sizeof(struct vmap_area),

gfp_mask & GFP_RECLAIM_MASK, node);

if (unlikely(!va))

return ERR_PTR(-ENOMEM);

/*

* Only scan the relevant parts containing pointers to other objects

* to avoid false negatives.

*/

kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);

retry:

spin_lock(&vmap_area_lock);

/*

* Invalidate cache if we have more permissive parameters.

* cached_hole_size notes the largest hole noticed _below_

* the vmap_area cached in free_vmap_cache: if size fits

* into that hole, we want to scan from vstart to reuse

* the hole instead of allocating above free_vmap_cache.

* Note that __free_vmap_area may update free_vmap_cache

* without updating cached_hole_size or cached_align.

*/

if (!free_vmap_cache ||

size < cached_hole_size ||

vstart < cached_vstart ||

align < cached_align) {

nocache:

cached_hole_size = 0;

free_vmap_cache = NULL;

}

/* record if we encounter less permissive parameters */

cached_vstart = vstart;

cached_align = align;

/* find starting point for our search */

if (free_vmap_cache) {

first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);

addr = ALIGN(first->va_end, align);

if (addr < vstart)

goto nocache;

if (addr + size < addr)

goto overflow;

} else {

addr = ALIGN(vstart, align);

if (addr + size < addr)

goto overflow;

n = vmap_area_root.rb_node;

first = NULL;

while (n) {

struct vmap_area *tmp;

tmp = rb_entry(n, struct vmap_area, rb_node);

if (tmp->va_end >= addr) {

first = tmp;

if (tmp->va_start <= addr)

break;

n = n->rb_left;

} else

n = n->rb_right;

}

if (!first)

goto found;

}

/* from the starting point, walk areas until a suitable hole is found */

while (addr + size > first->va_start && addr + size <= vend) {

if (addr + cached_hole_size < first->va_start)

cached_hole_size = first->va_start - addr;

addr = ALIGN(first->va_end, align);

if (addr + size < addr)

goto overflow;

if (list_is_last(&first->list, &vmap_area_list))

goto found;

first = list_entry(first->list.next,

struct vmap_area, list);

}

found:

if (addr + size > vend)

goto overflow;

va->va_start = addr;

va->va_end = addr + size;

va->flags = 0;

__insert_vmap_area(va);

free_vmap_cache = &va->rb_node;

spin_unlock(&vmap_area_lock);

BUG_ON(va->va_start & (align-1));

BUG_ON(va->va_start < vstart);

BUG_ON(va->va_end > vend);

return va;

overflow:

spin_unlock(&vmap_area_lock);

if (!purged) {

purge_vmap_area_lazy();

purged = 1;

goto retry;

}

if (printk_ratelimit())

pr_warn("vmap allocation for size %lu failed: "

"use vmalloc=<size> to increase size.

", size);

kfree(va);

return ERR_PTR(-EBUSY);

}

alloc_vmap_area()在vmalloc整个空间中查找一块大小合适的并且没有人使用的空间,这段空间称为hole。注意这个参数vstart是指VMALLOC_START,vend是指VMALLOC_END。

第25行代码,free_vmap_cache、cached_hole_size和cached_vstart这几个变量是在几年前增加的一个优化选项中,核心思想是从上一次查找的结果中开始查找。这里假设暂时忽略free_vmap_cache这个优化,从47行代码开始看起。

查找的地址从VMALLOC_START开始,首先从vmap_area_root这颗红黑树上查找,这个红黑树里存放着系统中正在使用的vmalloc区块,遍历左子叶节点找区间地址最小区块。如果区块的开始地址等于VMALLOC_START,说明这区块是第一块vmalloc区块。如果红黑树没有一个节点,说明整个vmalloc区间都是空的,见第66行代码。

第54~64行代码,这里遍历的结果是返回起始地址最小vmalloc区块,这个区块有可能是VMALLOC_START开始的,也有可能不是。

然后从VMALLOC_START地址开始,查找每个已存在的vmalloc的区块的缝隙hole能否容纳目前要分配内存的大小。如果不能再已有vmalloc区块的缝隙中找到合适的hole,那么从最后一块vmalloc区块的结束地址开始一个新的vmalloc区域,见第71~83行代码。

第92行代码,找到新区块hole后,调用__insert_vmap_area()函数把这个hole注册到红黑树上。

static void __insert_vmap_area(struct vmap_area *va)

{

struct rb_node **p = &vmap_area_root.rb_node;

struct rb_node *parent = NULL;

struct rb_node *tmp;

while (*p) {

struct vmap_area *tmp_va;

parent = *p;

tmp_va = rb_entry(parent, struct vmap_area, rb_node);

if (va->va_start < tmp_va->va_end)

p = &(*p)->rb_left;

else if (va->va_end > tmp_va->va_start)

p = &(*p)->rb_right;

else

BUG();

}

rb_link_node(&va->rb_node, parent, p);

rb_insert_color(&va->rb_node, &vmap_area_root);

/* address-sort this list */

tmp = rb_prev(&va->rb_node);

if (tmp) {

struct vmap_area *prev;

prev = rb_entry(tmp, struct vmap_area, rb_node);

list_add_rcu(&va->list, &prev->list);

} else

list_add_rcu(&va->list, &vmap_area_list);

}

回到__get_vm_area_node()函数的第16行代码上,把刚找到的struct vmap_area *va的相关信息填到struct vm_struct *vm中。

static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,

unsigned long flags, const void *caller)

{

spin_lock(&vmap_area_lock);

vm->flags = flags;

vm->addr = (void *)va->va_start;

vm->size = va->va_end - va->va_start;

vm->caller = caller;

va->vm = vm;

va->flags |= VM_VM_AREA;

spin_unlock(&vmap_area_lock);

}

回到__vmalloc_node_range()函数中的第16行代码中的 __vmalloc_area_node()。

[vmalloc()->__vmalloc_node_range()->__vmalloc_area_node()]

static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,

pgprot_t prot, int node)

{

const int order = 0;

struct page **pages;

unsigned int nr_pages, array_size, i;

const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;

const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;

nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;

array_size = (nr_pages * sizeof(struct page *));

area->nr_pages = nr_pages;

/* Please note that the recursion is strictly bounded. */

if (array_size > PAGE_SIZE) {

pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,

PAGE_KERNEL, node, area->caller);

area->flags |= VM_VPAGES;

} else {

pages = kmalloc_node(array_size, nested_gfp, node);

}

area->pages = pages;

if (!area->pages) {

remove_vm_area(area->addr);

kfree(area);

return NULL;

}

for (i = 0; i < area->nr_pages; i++) {

struct page *page;

if (node == NUMA_NO_NODE)

page = alloc_page(alloc_mask);

else

page = alloc_pages_node(node, alloc_mask, order);

if (unlikely(!page)) {

/* Successfully allocated i pages, free them in __vunmap() */

area->nr_pages = i;

goto fail;

}

area->pages[i] = page;

if (gfp_mask & __GFP_WAIT)

cond_resched();

}

if (map_vm_area(area, prot, pages))

goto fail;

return area->addr;

fail:

warn_alloc_failed(gfp_mask, order,

"vmalloc: allocation failure, allocated %ld of %ld bytes

",

(area->nr_pages*PAGE_SIZE), area->size);

vfree(area->addr);

return NULL;

}

在__vmalloc_area_node()函数中,首先计算vmalloc分配内存大小有几个页面,然后使用alloc_page()这个API来分配物理页面,并且使用area->pages保存已分配的页面page数据结构指针,最后调用map_vm_area()函数来建立页面映射。

map_vm_area()函数最后调用vmap_page_range_noflush()来建立页面映射关系。

static int vmap_page_range_noflush(unsigned long start, unsigned long end,

pgprot_t prot, struct page **pages)

{

pgd_t *pgd;

unsigned long next;

unsigned long addr = start;

int err = 0;

int nr = 0;

BUG_ON(addr >= end);

pgd = pgd_offset_k(addr);

do {

next = pgd_addr_end(addr, end);

err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);

if (err)

return err;

} while (pgd++, addr = next, addr != end);

return nr;

}

pgd_offset_k()首先从init_mm中获取指向PGD页面目录下的基地址,然后通过地址addr来找到对应的PGD表项。while循环里从开始地址addr到结束地址,按照PGDIR_SIZE的大小依次调用vmap_pud_range()来处理PGD页表。pgd_offset_k()宏定义如下:

#define pgd_index(addr)		((addr) >> PGDIR_SHIFT)

#define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))

#define pgd_offset_k(addr) pgd_offset(&init_mm, addr)

#define pgd_addr_end(addr, end)

({

unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;

(__boundary - 1 < (end) - 1) ? __boudary : (end);

}

)

vmap_pud_range()函数会依次调用vmap_pmd_range()。在ARM Vexpress平台中,页表是二级页表,所以PUD和PMD都指向PGD,最后直接调用vmap_pte_range()。

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,

unsigned long end, pgprot_t prot, struct page **pages, int *nr)

{

pte_t *pte;

/*

* nr is a running index into the array which helps higher level

* callers keep track of where we"re up to.

*/

pte = pte_alloc_kernel(pmd, addr);

if (!pte)

return -ENOMEM;

do {

struct page *page = pages[*nr];

if (WARN_ON(!pte_none(*pte)))

return -EBUSY;

if (WARN_ON(!page))

return -ENOMEM;

set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));

(*nr)++;

} while (pte++, addr += PAGE_SIZE, addr != end);

return 0;

}

在此场景中,对应的pmd页表项内容为空,即pmd_none(*(pmd)),所以需要新分配pte页表项。

static inline pte_t *

pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)

{

pte_t *pte = (pte_t *)__get_free_page(PGALLOC_GFP);

if(pte)

clean_pte_table(pte);

return pte;

}

mk_pte()宏利用刚分配的page页面和页面属性prot来新生成一个PTE entry,最后通过set_pte_at()函数把PTE entry设置到硬件页表PTE页表项中。

原文链接:https://www.cnblogs.com/linhaostudy/archive/2020/07/07/13259560.html

以上是 vmalloc函数 的全部内容, 来源链接: utcz.com/z/518106.html

回到顶部