老大吩咐的可重入分布式锁,终于完美的实现了!!!

编程

重做永远比改造简单

最近在做一个项目,将一个其他公司的实现系统(下文称作旧系统),完整的整合到自己公司的系统(下文称作新系统)中,这其中需要将对方实现的功能完整在自己系统也实现一遍。

旧系统还有一批存量商户,为了不影响存量商户的体验,新系统提供的对外接口,还必须得跟以前一致。最后系统完整切换之后,功能只运行在新系统中,这就要求旧系统的数据还需要完整的迁移到新系统中。

当然这些在做这个项目之前就有预期,想过这个过程很难,但是没想到有那么难。原本感觉排期大半年,时间还是挺宽裕,现在感觉就是大坑,还不得不在坑里一点点去填。

哎,说多都是泪,不吐槽了,等到下次做完再给大家复盘下真正心得体会。

回到正文,上篇文章Redis 分布式锁" title="分布式锁">分布式锁,咱们基于 Redis 实现一个分布式锁。这个分布式锁基本功能没什么问题,但是缺少可重入的特性,所以这篇文章小黑哥就带大家来实现一下可重入的分布式锁。

本篇文章将会涉及以下内容:

  • 可重入
  • 基于 ThreadLocal 实现方案
  • 基于 Redis Hash 实现方案

先赞后看,养成习惯。微信搜索「程序通事」,关注就完事了~

可重入

说到可重入锁,首先我们来看看一段来自 wiki 上可重入的解释:

若一个程序或子程序可以“在任意时刻被中断然后操作系统调度执行另外一段代码,这段代码又调用了该子程序不会出错”,则称其为可重入(reentrant或re-entrant)的。即当该子程序正在运行时,执行线程可以再次进入并执行它,仍然获得符合设计时预期的结果。与多线程并发执行的线程安全不同,可重入强调对单个线程执行时重新进入同一个子程序仍然是安全的。

当一个线程执行一段代码成功获取锁之后,继续执行时,又遇到加锁的代码,可重入性就就保证线程能继续执行,而不可重入就是需要等待锁释放之后,再次获取锁成功,才能继续往下执行。

用一段 Java 代码解释可重入:

public synchronized void a() {

b();

}

public synchronized void b() {

// pass

}

假设 X 线程在 a 方法获取锁之后,继续执行 b 方法,如果此时不可重入,线程就必须等待锁释放,再次争抢锁。

锁明明是被 X 线程拥有,却还需要等待自己释放锁,然后再去抢锁,这看起来就很奇怪,我释放我自己~

可重入性就可以解决这个尴尬的问题,当线程拥有锁之后,往后再遇到加锁方法,直接将加锁次数加 1,然后再执行方法逻辑。退出加锁方法之后,加锁次数再减 1,当加锁次数为 0 时,锁才被真正的释放。

可以看到可重入锁最大特性就是计数,计算加锁的次数。所以当可重入锁需要在分布式环境实现时,我们也就需要统计加锁次数。

分布式可重入锁实现方式有两种:

  • 基于 ThreadLocal 实现方案
  • 基于 Redis Hash 实现方案

首先我们看下基于 ThreadLocal 实现方案。

基于 ThreadLocal 实现方案

实现方式

Java 中 ThreadLocal可以使每个线程拥有自己的实例副本,我们可以利用这个特性对线程重入次数进行技术。

下面我们定义一个ThreadLocal的全局变量 LOCKS,内存存储 Map 实例变量。

private static ThreadLocal<Map<String, Integer>> LOCKS = ThreadLocal.withInitial(HashMap::new);

每个线程都可以通过 ThreadLocal获取自己的 Map实例,Mapkey 存储锁的名称,而 value存储锁的重入次数。

加锁的代码如下:

/**

* 可重入锁

*

* @param lockName 锁名字,代表需要争临界资源

* @param request 唯一标识,可以使用 uuid,根据该值判断是否可以重入

* @param leaseTime 锁释放时间

* @param unit 锁释放时间单位

* @return

*/

public Boolean tryLock(String lockName, String request, long leaseTime, TimeUnit unit) {

Map<String, Integer> counts = LOCKS.get();

if (counts.containsKey(lockName)) {

counts.put(lockName, counts.get(lockName) + 1);

return true;

} else {

if (redisLock.tryLock(lockName, request, leaseTime, unit)) {

counts.put(lockName, 1);

return true;

}

}

return false;

}

ps: redisLock#tryLock 为上一篇文章实现的分布锁。

由于公号外链无法直接跳转,关注『程序通事』,回复分布式锁获取源代码。

加锁方法首先判断当前线程是否已经已经拥有该锁,若已经拥有,直接对锁的重入次数加 1。

若还没拥有该锁,则尝试去 Redis 加锁,加锁成功之后,再对重入次数加 1 。

释放锁的代码如下:

/**

* 解锁需要判断不同线程池

*

* @param lockName

* @param request

*/

public void unlock(String lockName, String request) {

Map<String, Integer> counts = LOCKS.get();

if (counts.getOrDefault(lockName, 0) <= 1) {

counts.remove(lockName);

Boolean result = redisLock.unlock(lockName, request);

if (!result) {

throw new IllegalMonitorStateException("attempt to unlock lock, not locked by lockName:+" + lockName + " with request: "

+ request);

}

} else {

counts.put(lockName, counts.get(lockName) - 1);

}

}

释放锁的时首先判断重入次数,若大于 1,则代表该锁是被该线程拥有,所以直接将锁重入次数减 1 即可。

若当前可重入次数小于等于 1,首先移除 Map中锁对应的 key,然后再到 Redis 释放锁。

这里需要注意的是,当锁未被该线程拥有,直接解锁,可重入次数也是小于等于 1 ,这次可能无法直接解锁成功。

ThreadLocal 使用过程要记得及时清理内部存储实例变量,防止发生内存泄漏,上下文数据串用等问题。

下次咱来聊聊最近使用 ThreadLocal 写的 Bug。

相关问题

使用 ThreadLocal 这种本地记录重入次数,虽然真的简单高效,但是也存在一些问题。

过期时间问题

上述加锁的代码可以看到,重入加锁时,仅仅对本地计数加 1 而已。这样可能就会导致一种情况,由于业务执行过长,Redis 已经过期释放锁。

而再次重入加锁时,由于本地还存在数据,认为锁还在被持有,这就不符合实际情况。

如果要在本地增加过期时间,还需要考虑本地与 Redis 过期时间一致性的,代码就会变得很复杂。

不同线程/进程可重入问题

狭义上可重入性应该只是对于同一线程的可重入,但是实际业务可能需要不同的应用线程之间可以重入同把锁。

ThreadLocal的方案仅仅只能满足同一线程重入,无法解决不同线程/进程之间重入问题。

不同线程/进程重入问题就需要使用下述方案 Redis Hash 方案解决。

基于 Redis Hash 可重入锁

实现方式

ThreadLocal 的方案中我们使用了 Map 记载锁的可重入次数,而 Redis 也同样提供了 Hash (哈希表)这种可以存储键值对数据结构。所以我们可以使用 Redis Hash 存储的锁的重入次数,然后利用 lua 脚本判断逻辑。

加锁的 lua 脚本如下:

---- 1 代表 true

---- 0 代表 false

if (redis.call("exists", KEYS[1]) == 0) then

redis.call("hincrby", KEYS[1], ARGV[2], 1);

redis.call("pexpire", KEYS[1], ARGV[1]);

return 1;

end ;

if (redis.call("hexists", KEYS[1], ARGV[2]) == 1) then

redis.call("hincrby", KEYS[1], ARGV[2], 1);

redis.call("pexpire", KEYS[1], ARGV[1]);

return 1;

end ;

return 0;

如果 KEYS:[lock],ARGV[1000,uuid]

不熟悉 lua 语言同学也不要怕,上述逻辑还是比较简单的。

加锁代码首先使用 Redis exists 命令判断当前 lock 这个锁是否存在。

如果锁不存在的话,直接使用 hincrby创建一个键为 lock hash 表,并且为 Hash 表中键为 uuid 初始化为 0,然后再次加 1,最后再设置过期时间。

如果当前锁存在,则使用 hexists判断当前 lock 对应的 hash 表中是否存在 uuid 这个键,如果存在,再次使用 hincrby 加 1,最后再次设置过期时间。

最后如果上述两个逻辑都不符合,直接返回。

加锁代码如下:

// 初始化代码

String lockLuaScript = IOUtils.toString(ResourceUtils.getURL("classpath:lock.lua").openStream(), Charsets.UTF_8);

lockScript = new DefaultRedisScript<>(lockLuaScript, Boolean.class);

/**

* 可重入锁

*

* @param lockName 锁名字,代表需要争临界资源

* @param request 唯一标识,可以使用 uuid,根据该值判断是否可以重入

* @param leaseTime 锁释放时间

* @param unit 锁释放时间单位

* @return

*/

public Boolean tryLock(String lockName, String request, long leaseTime, TimeUnit unit) {

long internalLockLeaseTime = unit.toMillis(leaseTime);

return stringRedisTemplate.execute(lockScript, Lists.newArrayList(lockName), String.valueOf(internalLockLeaseTime), request);

}

Spring-Boot 2.2.7.RELEASE

只要搞懂 Lua 脚本加锁逻辑,Java 代码实现还是挺简单的,直接使用 SpringBoot 提供的 StringRedisTemplate 即可。

解锁的 Lua 脚本如下:

-- 判断 hash set 可重入 key 的值是否等于 0

-- 如果为 0 代表 该可重入 key 不存在

if (redis.call("hexists", KEYS[1], ARGV[1]) == 0) then

return nil;

end ;

-- 计算当前可重入次数

local counter = redis.call("hincrby", KEYS[1], ARGV[1], -1);

-- 小于等于 0 代表可以解锁

if (counter > 0) then

return 0;

else

redis.call("del", KEYS[1]);

return 1;

end ;

return nil;

首先使用 hexists 判断 Redis Hash 表是否存给定的域。

如果 lock 对应 Hash 表不存在,或者 Hash 表不存在 uuid 这个 key,直接返回 nil

若存在的情况下,代表当前锁被其持有,首先使用 hincrby使可重入次数减 1 ,然后判断计算之后可重入次数,若小于等于 0,则使用 del 删除这把锁。

解锁的 Java 代码如下:

// 初始化代码:

String unlockLuaScript = IOUtils.toString(ResourceUtils.getURL("classpath:unlock.lua").openStream(), Charsets.UTF_8);

unlockScript = new DefaultRedisScript<>(unlockLuaScript, Long.class);

/**

* 解锁

* 若可重入 key 次数大于 1,将可重入 key 次数减 1 <br>

* 解锁 lua 脚本返回含义:<br>

* 1:代表解锁成功 <br>

* 0:代表锁未释放,可重入次数减 1 <br>

* nil:代表其他线程尝试解锁 <br>

* <p>

* 如果使用 DefaultRedisScript<Boolean>,由于 Spring-data-redis eval 类型转化,<br>

* 当 Redis 返回 Nil bulk, 默认将会转化为 false,将会影响解锁语义,所以下述使用:<br>

* DefaultRedisScript<Long>

* <p>

* 具体转化代码请查看:<br>

* JedisScriptReturnConverter<br>

*

* @param lockName 锁名称

* @param request 唯一标识,可以使用 uuid

* @throws IllegalMonitorStateException 解锁之前,请先加锁。若为加锁,解锁将会抛出该错误

*/

public void unlock(String lockName, String request) {

Long result = stringRedisTemplate.execute(unlockScript, Lists.newArrayList(lockName), request);

// 如果未返回值,代表其他线程尝试解锁

if (result == null) {

throw new IllegalMonitorStateException("attempt to unlock lock, not locked by lockName:+" + lockName + " with request: "

+ request);

}

}

解锁代码执行方式与加锁类似,只不过解锁的执行结果返回类型使用 Long。这里之所以没有跟加锁一样使用 Boolean ,这是因为解锁 lua 脚本中,三个返回值含义如下:

  • 1 代表解锁成功,锁被释放
  • 0 代表可重入次数被减 1
  • null 代表其他线程尝试解锁,解锁失败

如果返回值使用 Boolean,Spring-data-redis 进行类型转换时将会把 null 转为 false,这就会影响我们逻辑判断,所以返回类型只好使用 Long

以下代码来自 JedisScriptReturnConverter

相关问题

spring-data-redis 低版本问题

如果 Spring-Boot 使用 Jedis 作为连接客户端,并且使用Redis Cluster 集群模式,需要使用 2.1.9 以上版本的spring-boot-starter-data-redis,不然执行过程中将会抛出:

org.springframework.dao.InvalidDataAccessApiUsageException: EvalSha is not supported in cluster environment.

如果当前应用无法升级 spring-data-redis也没关系,可以使用如下方式,直接使用原生 Jedis 连接执行 lua 脚本。

以加锁代码为例:

public boolean tryLock(String lockName, String reentrantKey, long leaseTime, TimeUnit unit) {

long internalLockLeaseTime = unit.toMillis(leaseTime);

Boolean result = stringRedisTemplate.execute((RedisCallback<Boolean>) connection -> {

Object innerResult = eval(connection.getNativeConnection(), lockScript, Lists.newArrayList(lockName), Lists.newArrayList(String.valueOf(internalLockLeaseTime), reentrantKey));

return convert(innerResult);

});

return result;

}

private Object eval(Object nativeConnection, RedisScript redisScript, final List<String> keys, final List<String> args) {

Object innerResult = null;

// 集群模式和单点模式虽然执行脚本的方法一样,但是没有共同的接口,所以只能分开执行

// 集群

if (nativeConnection instanceof JedisCluster) {

innerResult = evalByCluster((JedisCluster) nativeConnection, redisScript, keys, args);

}

// 单点

else if (nativeConnection instanceof Jedis) {

innerResult = evalBySingle((Jedis) nativeConnection, redisScript, keys, args);

}

return innerResult;

}

数据类型转化问题

如果使用 Jedis 原生连接执行 Lua 脚本,那么可能又会碰到数据类型的转换坑。

可以看到 Jedis#eval返回 Object,我们需要具体根据 Lua 脚本的返回值的,再进行相关转化。这其中就涉及到 Lua 数据类型转化为 Redis 数据类型。

下面主要我们来讲下 Lua 数据转化 Redis 的规则中几条比较容易踩坑:

1、Lua number 与 Redis 数据类型转换

Lua 中 number 类型是一个双精度的浮点数,但是 Redis 只支持整数类型,所以这个转化过程将会丢弃小数位。

2、Lua boolean 与 Redis 类型转换

这个转化比较容易踩坑,Redis 中是不存在 boolean 类型,所以当Lua 中 true 将会转为 Redis 整数 1。而 Lua 中 false 并不是转化整数,而是转化 null 返回给客户端。

3、Lua nil 与 Redis 类型转换

Lua nil 可以当做是一个空值,可以等同于 Java 中的 null。在 Lua 中如果 nil 出现在条件表达式,将会当做 false 处理。

所以 Lua nil 也将会 null 返回给客户端。

其他转化规则比较简单,详情参考:

http://doc.redisfans.com/script/eval.html

总结

可重入分布式锁关键在于对于锁重入的计数,这篇文章主要给出两种解决方案,一种基于 ThreadLocal 实现方案,这种方案实现简单,运行也比较高效。但是若要处理锁过期的问题,代码实现就比较复杂。

另外一种采用 Redis Hash 数据结构实现方案,解决了 ThreadLocal 的缺陷,但是代码实现难度稍大,需要熟悉 Lua 脚本,以及Redis 一些命令。另外使用 spring-data-redis 等操作 Redis 时不经意间就会遇到各种问题。

帮助

https://www.sofastack.tech/blog/sofa-jraft-rheakv-distributedlock/

https://tech.meituan.com/2016/09/29/distributed-system-mutually-exclusive-idempotence-cerberus-gtis.html

最后说两句(求关注)

看完文章,哥哥姐姐们点个赞吧,周更真的超累,不知觉又写了两天,拒绝白嫖,来点正反馈呗~。

最后感谢各位的阅读,才疏学浅,难免存在纰漏,如果你发现错误的地方,可以留言指出。如果看完文章还有其他不懂的地方,欢迎加我,互相学习,一起成长~

最后谢谢大家支持~

最最后,重要的事再说一篇~

快来关注我呀~

快来关注我呀~

快来关注我呀~

欢迎关注我的公众号:程序通事,获得日常干货推送。如果您对我的专题内容感兴趣,也可以关注我的博客:studyidea.cn

以上是 老大吩咐的可重入分布式锁,终于完美的实现了!!! 的全部内容, 来源链接: utcz.com/z/517456.html

回到顶部