聊聊MaxwellKafkaPartitioner
序
本文主要研究一下MaxwellKafkaPartitioner
MaxwellKafkaPartitioner
maxwell-1.25.1/src/main/java/com/zendesk/maxwell/producer/partitioners/MaxwellKafkaPartitioner.java
public class MaxwellKafkaPartitioner extends AbstractMaxwellPartitioner { HashFunction hashFunc;
public MaxwellKafkaPartitioner(String hashFunction, String partitionKey, String csvPartitionColumns, String partitionKeyFallback) {
super(partitionKey, csvPartitionColumns, partitionKeyFallback);
int MURMUR_HASH_SEED = 25342;
switch (hashFunction) {
case "murmur3": this.hashFunc = new HashFunctionMurmur3(MURMUR_HASH_SEED);
break;
case "default":
default:
this.hashFunc = new HashFunctionDefault();
break;
}
}
public int kafkaPartition(RowMap r, int numPartitions) {
return Math.abs(hashFunc.hashCode(this.getHashString(r)) % numPartitions);
}
}
- MaxwellKafkaPartitioner继承了AbstractMaxwellPartitioner,其构造器根据hashFunction类型创建HashFunctionMurmur3或者HashFunctionDefault;其kafkaPartition方法则通过
Math.abs(hashFunc.hashCode(this.getHashString(r)) % numPartitions)
计算partition
AbstractMaxwellPartitioner
maxwell-1.25.1/src/main/java/com/zendesk/maxwell/producer/partitioners/AbstractMaxwellPartitioner.java
public abstract class AbstractMaxwellPartitioner { List<String> partitionColumns = new ArrayList<String>();
private final PartitionBy partitionBy, partitionByFallback;
private PartitionBy partitionByForString(String key) {
if ( key == null )
return PartitionBy.DATABASE;
switch(key) {
case "table":
return PartitionBy.TABLE;
case "database":
return PartitionBy.DATABASE;
case "primary_key":
return PartitionBy.PRIMARY_KEY;
case "transaction_id":
return PartitionBy.TRANSACTION_ID;
case "column":
return PartitionBy.COLUMN;
case "random":
return PartitionBy.RANDOM;
default:
throw new RuntimeException("Unknown partitionBy string: " + key);
}
}
public AbstractMaxwellPartitioner(String partitionKey, String csvPartitionColumns, String partitionKeyFallback) {
this.partitionBy = partitionByForString(partitionKey);
this.partitionByFallback = partitionByForString(partitionKeyFallback);
if ( csvPartitionColumns != null )
this.partitionColumns = Arrays.asList(csvPartitionColumns.split("\s*,\s*"));
}
static protected String getDatabase(RowMap r) {
return r.getDatabase();
}
static protected String getTable(RowMap r) {
return r.getTable();
}
public String getHashString(RowMap r, PartitionBy by) {
switch ( by ) {
case TABLE:
String t = r.getTable();
if ( t == null && partitionByFallback == PartitionBy.DATABASE )
return r.getDatabase();
else
return t;
case DATABASE:
return r.getDatabase();
case PRIMARY_KEY:
return r.getRowIdentity().toConcatString();
case TRANSACTION_ID:
return String.valueOf(r.getXid());
case COLUMN:
String s = r.buildPartitionKey(partitionColumns);
if ( s.length() > 0 )
return s;
else
return getHashString(r, partitionByFallback);
case RANDOM:
return RandomStringUtils.random(10, true, true);
}
return null; // thx java
}
public String getHashString(RowMap r) {
if ( r.getPartitionString() != null )
return r.getPartitionString();
else
return getHashString(r, partitionBy);
}
}
- AbstractMaxwellPartitioner的构造器通过partitionByForString确定PartitionBy;其getHashString方法根据PartitionBy返回指定的值
HashFunction
maxwell-1.25.1/src/main/java/com/zendesk/maxwell/producer/partitioners/HashFunction.java
public interface HashFunction { int hashCode(String s);
}
- HashFunction接口定义了hashCode方法
HashFunctionDefault
maxwell-1.25.1/src/main/java/com/zendesk/maxwell/producer/partitioners/HashFunctionDefault.java
public class HashFunctionDefault implements HashFunction { public int hashCode(String s) {
return s.hashCode();
}
}
- HashFunctionDefault实现了HashFunction接口,其hashCode直接返回string的hashCode
HashFunctionMurmur3
maxwell-1.25.1/src/main/java/com/zendesk/maxwell/producer/partitioners/HashFunctionMurmur3.java
public class HashFunctionMurmur3 implements HashFunction { private int seed;
public HashFunctionMurmur3(int seed){
this.seed = seed;
}
public int hashCode(String s) {
return MurmurHash3.murmurhash3_x86_32(s, 0, s.length(), seed);
}
}
- HashFunctionMurmur3实现了HashFunction接口,其hashCode方法返回
MurmurHash3.murmurhash3_x86_32(s, 0, s.length(), seed)
MaxwellKafkaProducerWorker
maxwell-1.25.1/src/main/java/com/zendesk/maxwell/producer/MaxwellKafkaProducer.java
class MaxwellKafkaProducerWorker extends AbstractAsyncProducer implements Runnable, StoppableTask { static final Logger LOGGER = LoggerFactory.getLogger(MaxwellKafkaProducer.class);
private final Producer<String, String> kafka;
private final String topic;
private final String ddlTopic;
private final MaxwellKafkaPartitioner partitioner;
private final MaxwellKafkaPartitioner ddlPartitioner;
//......
ProducerRecord<String, String> makeProducerRecord(final RowMap r) throws Exception {
RowIdentity pk = r.getRowIdentity();
String key = r.pkToJson(keyFormat);
String value = r.toJSON(outputConfig);
ProducerRecord<String, String> record;
if (r instanceof DDLMap) {
record = new ProducerRecord<>(this.ddlTopic, this.ddlPartitioner.kafkaPartition(r, getNumPartitions(this.ddlTopic)), key, value);
} else {
String topic;
// javascript topic override
topic = r.getKafkaTopic();
if ( topic == null ) {
topic = generateTopic(this.topic, pk);
}
LOGGER.debug("context.getConfig().producerPartitionKey = " + context.getConfig().producerPartitionKey);
record = new ProducerRecord<>(topic, this.partitioner.kafkaPartition(r, getNumPartitions(topic)), key, value);
}
return record;
}
//......
}
- MaxwellKafkaProducerWorker的makeProducerRecord方法针对DDLMap使用ddlPartitioner.kafkaPartition(r, getNumPartitions(this.ddlTopic))确定partition;非DDLMap的使用partitioner.kafkaPartition(r, getNumPartitions(topic))来确定partition
小结
MaxwellKafkaPartitioner继承了AbstractMaxwellPartitioner,其构造器根据hashFunction类型创建HashFunctionMurmur3或者HashFunctionDefault;其kafkaPartition方法则通过Math.abs(hashFunc.hashCode(this.getHashString(r)) % numPartitions)
计算partition
doc
- MaxwellKafkaPartitioner
以上是 聊聊MaxwellKafkaPartitioner 的全部内容, 来源链接: utcz.com/z/516262.html