【原创】Linuxselect/poll机制原理分析

编程

前言

  • Read the fucking source code! --By 鲁迅
  • A picture is worth a thousand words. --By 高尔基

1. 概述

Linux系统在访问设备的时候,存在以下几种IO模型:

  1. Blocking IO Model,阻塞IO模型
  2. Nonblocking I/O Model,非阻塞IO模型
  3. I/O Multiplexing Model,IO多路复用模型;
  4. Signal Driven I/O Model,信号驱动IO模型
  5. Asynchronous I/O Model,异步IO模型

今天我们来分析下IO多路复用机制,在Linux中是通过select/poll/epoll机制来实现的。

先看一下阻塞IO模型与非阻塞IO模型的特点:

  • 阻塞IO模型:在IO访问的时候,如果条件没有满足,会将当前任务切换出去,等到条件满足时再切换回来。

    • 缺点:阻塞IO操作,会让处于同一个线程的执行逻辑都在阻塞期间无法执行,这往往意味着需要创建单独的线程来交互。

  • 非阻塞IO模型:在IO访问的时候,如果条件没有满足,直接返回,不会block该任务的后续操作。

    • 缺点:非阻塞IO需要用户一直轮询操作,轮询可能会来带CPU的占用问题。

对单个设备IO操作时,问题并不严重,如果有多个设备呢?比如,在服务器中,监听多个Client的收发处理,这时候IO多路复用就显得尤为重要了,来张图:

如果这个图,让你有点迷惑,那就像个男人一样,man一下select/poll函数吧:

  • select:

  • poll

简单来说,select/poll能监听多个设备的文件描述符,只要有任何一个设备满足条件,select/poll就会返回,否则将进行睡眠等待。

看起来,select/poll像是一个管家了,统一负责来监听处理了。

已经迫不及待来看看原理了,由于底层的机制大体差不多,我将选择select来做进一步分析。

2. 原理

2.1 select系统调用

select的系统调用开始:

  • select系统调用,最终的核心逻辑是在do_select函数中处理的,参考fs/select.c文件;
  • do_select函数中,有几个关键的操作:

    1. 初始化poll_wqueues结构,包括几个关键函数指针的初始化,用于驱动中进行回调处理;
    2. 循环遍历监测的文件描述符,并且调用f_op->poll()函数,如果有监测条件满足,则会跳出循环;
    3. 在监测的文件描述符都不满足条件时,poll_schedule_timeout让当前进程进行睡眠,超时唤醒,或者被所属的等待队列唤醒;

  • do_select函数的循环退出条件有三个:

    1. 检测的文件描述符满足条件;
    2. 超时;
    3. 有信号要处理;

  • 在设备驱动程序中实现的poll()函数,会在do_select()中被调用,而驱动中的poll()函数,需要调用poll_wait()函数,poll_wait函数本身很简单,就是去回调函数p->_qproc(),这个回调函数正是poll_initwait()函数中初始化的__pollwait()

所以,来看看__pollwait()函数喽。

2.2 __pollwait

  • 驱动中的poll_wait函数回调__pollwait,这个函数完成的工作是向struct poll_wqueue结构中添加一条poll_table_entry
  • poll_table_entry中包含了等待队列的相关数据结构;
  • 对等待队列的相关数据结构进行初始化,包括设置等待队列唤醒时的回调函数指针,设置成pollwake
  • 将任务添加到驱动程序中的等待队列中,最终驱动可以通过wake_up_interruptile等接口来唤醒处理;

这一顿操作,其实就是驱动向select维护的struct poll_wqueue中注册,并将调用select的任务添加到驱动的等待队列中,以便在合适的时机进行唤醒。所以,本质上来说,这是基于等待队列的机制来实现的。

是不是还有点抽象,来看看数据结构的组织关系吧。

2.3 数据结构关系

  • 调用select系统调用的进程/线程,会维护一个struct poll_wqueues结构,其中两个关键字段:

    1. pll_table:该结构体中的函数指针_qproc指向__pollwait函数;
    2. struct poll_table_entry[]:存放不同设备的poll_table_entry,这些条目的增加是在驱动调用poll_wait->__pollwait()时进行初始化并完成添加的;

2.4 驱动编写启示

如果驱动中要支持select的接口调用,那么需要做哪些事情呢?

如果理解了上文中的内容,你会毫不犹豫的大声说出以下几条:

  1. 定义一个等待队列头wait_queue_head_t,用于收留等待队列任务;
  2. struct file_operations结构体中的poll函数需要实现,比如xxx_poll()
  3. xxx_poll()函数中,当然不要忘了poll_wait函数的调用了,此外,该函数的返回值mask需要注意是在条件满足时对应的值,比如EPOLLIN/EPOLL/EPOLLERR等,这个返回值是在do_select()函数中会去判断处理的;
  4. 条件满足的时候,wake_up_interruptible唤醒任务,当然也可以使用wake_up,区别是:wake_up_interruptible只能唤醒处于TASK_INTERRUPTIBLE状态的任务,而wake_up能唤醒处于TASK_INTERRUPTIBLETASK_UNINTERRUPTIBLE状态的任务;

2.5 select/poll的差异

  • selectpoll本质上基本类似,其中select是由BSD UNIX引入,pollSystemV引入;
  • selectpoll需要轮询文件描述符集合,并在用户态和内核态之间进行拷贝,在文件描述符很多的情况下开销会比较大,select默认支持的文件描述符数量是1024;
  • Linux提供了epoll机制,改进了selectpoll在效率与资源上的缺点,未深入了解;

3. 示例代码

3.1 内核驱动

示例代码中的逻辑:

  1. 驱动维护一个count值,当count值大于0时,表明条件满足,poll返回正常的mask值;
  2. poll函数每执行一次,count值就减去一次;
  3. count的值可以由用户通过ioctl来进行设置;

#include <linux/init.h>

#include <linux/module.h>

#include <linux/poll.h>

#include <linux/wait.h>

#include <linux/cdev.h>

#include <linux/mutex.h>

#include <linux/slab.h>

#include <asm/ioctl.h>

#define POLL_DEV_NAME "poll"

#define POLL_MAGIC "P"

#define POLL_SET_COUNT (_IOW(POLL_MAGIC, 0, unsigned int))

struct poll_dev {

struct cdev cdev;

struct class *class;

struct device *device;

wait_queue_head_t wq_head;

struct mutex poll_mutex;

unsigned int count;

dev_t devno;

};

struct poll_dev *g_poll_dev = NULL;

static int poll_open(struct inode *inode, struct file *filp)

{

filp->private_data = g_poll_dev;

return 0;

}

static int poll_close(struct inode *inode, struct file *filp)

{

return 0;

}

static unsigned int poll_poll(struct file *filp, struct poll_table_struct *wait)

{

unsigned int mask = 0;

struct poll_dev *dev = filp->private_data;

mutex_lock(&dev->poll_mutex);

poll_wait(filp, &dev->wq_head, wait);

if (dev->count > 0) {

mask |= POLLIN | POLLRDNORM;

/* decrease each time */

dev->count--;

}

mutex_unlock(&dev->poll_mutex);

return mask;

}

static long poll_ioctl(struct file *filp, unsigned int cmd,

unsigned long arg)

{

struct poll_dev *dev = filp->private_data;

unsigned int cnt;

switch (cmd) {

case POLL_SET_COUNT:

mutex_lock(&dev->poll_mutex);

if (copy_from_user(&cnt, (void __user *)arg, _IOC_SIZE(cmd))) {

pr_err("copy_from_user fail:%d

", __LINE__);

return -EFAULT;

}

if (dev->count == 0) {

wake_up_interruptible(&dev->wq_head);

}

/* update count */

dev->count += cnt;

mutex_unlock(&dev->poll_mutex);

break;

default:

return -EINVAL;

}

return 0;

}

static struct file_operations poll_fops = {

.owner = THIS_MODULE,

.open = poll_open,

.release = poll_close,

.poll = poll_poll,

.unlocked_ioctl = poll_ioctl,

.compat_ioctl = poll_ioctl,

};

static int __init poll_init(void)

{

int ret;

if (g_poll_dev == NULL) {

g_poll_dev = (struct poll_dev *)kzalloc(sizeof(struct poll_dev), GFP_KERNEL);

if (g_poll_dev == NULL) {

pr_err("struct poll_dev allocate fail

");

return -1;

}

}

/* allocate device number */

ret = alloc_chrdev_region(&g_poll_dev->devno, 0, 1, POLL_DEV_NAME);

if (ret < 0) {

pr_err("alloc_chrdev_region fail:%d

", ret);

goto alloc_chrdev_err;

}

/* set char-device */

cdev_init(&g_poll_dev->cdev, &poll_fops);

g_poll_dev->cdev.owner = THIS_MODULE;

ret = cdev_add(&g_poll_dev->cdev, g_poll_dev->devno, 1);

if (ret < 0) {

pr_err("cdev_add fail:%d

", ret);

goto cdev_add_err;

}

/* create device */

g_poll_dev->class = class_create(THIS_MODULE, POLL_DEV_NAME);

if (IS_ERR(g_poll_dev->class)) {

pr_err("class_create fail

");

goto class_create_err;

}

g_poll_dev->device = device_create(g_poll_dev->class, NULL,

g_poll_dev->devno, NULL, POLL_DEV_NAME);

if (IS_ERR(g_poll_dev->device)) {

pr_err("device_create fail

");

goto device_create_err;

}

mutex_init(&g_poll_dev->poll_mutex);

init_waitqueue_head(&g_poll_dev->wq_head);

return 0;

device_create_err:

class_destroy(g_poll_dev->class);

class_create_err:

cdev_del(&g_poll_dev->cdev);

cdev_add_err:

unregister_chrdev_region(g_poll_dev->devno, 1);

alloc_chrdev_err:

kfree(g_poll_dev);

g_poll_dev = NULL;

return -1;

}

static void __exit poll_exit(void)

{

cdev_del(&g_poll_dev->cdev);

device_destroy(g_poll_dev->class, g_poll_dev->devno);

unregister_chrdev_region(g_poll_dev->devno, 1);

class_destroy(g_poll_dev->class);

kfree(g_poll_dev);

g_poll_dev = NULL;

}

module_init(poll_init);

module_exit(poll_exit);

MODULE_DESCRIPTION("select/poll test");

MODULE_AUTHOR("LoyenWang");

MODULE_LICENSE("GPL");

3.2 测试代码

测试代码逻辑:

  1. 创建一个设值线程,用于每隔2秒来设置一次count值;
  2. 主线程调用select函数监听,当设值线程设置了count值后,select便会返回;

#include <stdio.h>

#include <string.h>

#include <fcntl.h>

#include <pthread.h>

#include <errno.h>

#include <unistd.h>

#include <sys/ioctl.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <sys/time.h>

static void *set_count_thread(void *arg)

{

int fd = *(int *)arg;

unsigned int count_value = 1;

int loop_cnt = 20;

int ret;

while (loop_cnt--) {

ret = ioctl(fd, NOTIFY_SET_COUNT, &count_value);

if (ret < 0) {

printf("ioctl set count value fail:%s

", strerror(errno));

return NULL;

}

sleep(1);

}

return NULL;

}

int main(void)

{

int fd;

int ret;

pthread_t setcnt_tid;

int loop_cnt = 20;

/* for select use */

fd_set rfds;

struct timeval tv;

fd = open("/dev/poll", O_RDWR);

if (fd < 0) {

printf("/dev/poll open failed: %s

", strerror(errno));

return -1;

}

/* wait up to five seconds */

tv.tv_sec = 5;

tv.tv_usec = 0;

ret = pthread_create(&setcnt_tid, NULL,

set_count_thread, &fd);

if (ret < 0) {

printf("set_count_thread create fail: %d

", ret);

return -1;

}

while (loop_cnt--) {

FD_ZERO(&rfds);

FD_SET(fd, &rfds);

ret = select(fd + 1, &rfds, NULL, NULL, &tv);

//ret = select(fd + 1, &rfds, NULL, NULL, NULL);

if (ret == -1) {

perror("select()");

break;

}

else if (ret)

printf("Data is available now.

");

else {

printf("No data within five seconds.

");

}

}

ret = pthread_join(setcnt_tid, NULL);

if (ret < 0) {

printf("set_count_thread join fail.

");

return -1;

}

close(fd);

return 0;

}

以上是 【原创】Linuxselect/poll机制原理分析 的全部内容, 来源链接: utcz.com/z/515032.html

回到顶部