Linux3.14.12内存管理笔记【伙伴管理算法(5)】

编程

前面已经分析了伙伴管理算法的释放实现,接着分析一下伙伴管理算法的内存申请实现。

伙伴管理算法内存申请和释放的入口一样,其实并没有很清楚的界限表示这个函数是入口,而那个不是,所以例行从稍微偏上一点的地方作为入口分析。于是选择了alloc_pages()宏定义作为分析切入口:

【file:/include/linux/gfp.h】

#define alloc_pages(gfp_mask, order)

alloc_pages_node(numa_node_id(), gfp_mask, order)

而alloc_pages_node()的实现:

【file:/include/linux/gfp.h】

static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,

unsigned int order)

{

/* Unknown node is current node */

if (nid < 0)

nid = numa_node_id();

return __alloc_pages(gfp_mask, order, node_zonelist(nid, gfp_mask));

}

没有明确内存申请的node节点时,则默认会选择当前的node节点作为申请节点。往下则接着调用__alloc_pages()来申请具体内存,其中入参node_zonelist()是用于获取node节点的zone管理区列表。接着往下看一下__alloc_pages()的实现:

【file:/include/linux/gfp.h】

static inline struct page *

__alloc_pages(gfp_t gfp_mask, unsigned int order,

struct zonelist *zonelist)

{

return __alloc_pages_nodemask(gfp_mask, order, zonelist, NULL);

}

实则是封装了__alloc_pages_nodemask()。而__alloc_pages_nodemask()的实现:

【file:/mm/page_alloc.c】

/*

* This is the "heart" of the zoned buddy allocator.

*/

struct page *

__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,

struct zonelist *zonelist, nodemask_t *nodemask)

{

enum zone_type high_zoneidx = gfp_zone(gfp_mask);

struct zone *preferred_zone;

struct page *page = NULL;

int migratetype = allocflags_to_migratetype(gfp_mask);

unsigned int cpuset_mems_cookie;

int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;

struct mem_cgroup *memcg = NULL;

gfp_mask &= gfp_allowed_mask;

lockdep_trace_alloc(gfp_mask);

might_sleep_if(gfp_mask & __GFP_WAIT);

if (should_fail_alloc_page(gfp_mask, order))

return NULL;

/*

* Check the zones suitable for the gfp_mask contain at least one

* valid zone. It"s possible to have an empty zonelist as a result

* of GFP_THISNODE and a memoryless node

*/

if (unlikely(!zonelist->_zonerefs->zone))

return NULL;

/*

* Will only have any effect when __GFP_KMEMCG is set. This is

* verified in the (always inline) callee

*/

if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))

return NULL;

retry_cpuset:

cpuset_mems_cookie = get_mems_allowed();

/* The preferred zone is used for statistics later */

first_zones_zonelist(zonelist, high_zoneidx,

nodemask ? : &cpuset_current_mems_allowed,

&preferred_zone);

if (!preferred_zone)

goto out;

#ifdef CONFIG_CMA

if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)

alloc_flags |= ALLOC_CMA;

#endif

retry:

/* First allocation attempt */

page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,

zonelist, high_zoneidx, alloc_flags,

preferred_zone, migratetype);

if (unlikely(!page)) {

/*

* The first pass makes sure allocations are spread

* fairly within the local node. However, the local

* node might have free pages left after the fairness

* batches are exhausted, and remote zones haven"t

* even been considered yet. Try once more without

* fairness, and include remote zones now, before

* entering the slowpath and waking kswapd: prefer

* spilling to a remote zone over swapping locally.

*/

if (alloc_flags & ALLOC_FAIR) {

reset_alloc_batches(zonelist, high_zoneidx,

preferred_zone);

alloc_flags &= ~ALLOC_FAIR;

goto retry;

}

/*

* Runtime PM, block IO and its error handling path

* can deadlock because I/O on the device might not

* complete.

*/

gfp_mask = memalloc_noio_flags(gfp_mask);

page = __alloc_pages_slowpath(gfp_mask, order,

zonelist, high_zoneidx, nodemask,

preferred_zone, migratetype);

}

trace_mm_page_alloc(page, order, gfp_mask, migratetype);

out:

/*

* When updating a task"s mems_allowed, it is possible to race with

* parallel threads in such a way that an allocation can fail while

* the mask is being updated. If a page allocation is about to fail,

* check if the cpuset changed during allocation and if so, retry.

*/

if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))

goto retry_cpuset;

memcg_kmem_commit_charge(page, memcg, order);

return page;

}

其中lockdep_trace_alloc()需要CONFIG_TRACE_IRQFLAGS和CONFIG_PROVE_LOCKING同时定义的时候,才起作用,否则为空函数;如果申请页面传入的gfp_mask掩码携带__GFP_WAIT标识,表示允许页面申请时休眠,则会进入might_sleep_if()检查是否需要休眠等待以及重新调度;由于未设置CONFIG_FAIL_PAGE_ALLOC,则should_fail_alloc_page()恒定返回false;if (unlikely(!zonelist->_zonerefs->zone))用于检查当前申请页面的内存管理区zone是否为空;memcg_kmem_newpage_charge()和memcg_kmem_commit_charge()与控制组群Cgroup相关;get_mems_allowed()封装了read_seqcount_begin()用于获得当前对被顺序计数保护的共享资源进行读访问的顺序号,用于避免并发的情况下引起的失败,与其组合的操作函数是put_mems_allowed();first_zones_zonelist()则是用于根据nodemask,找到合适的不大于high_zoneidx的内存管理区preferred_zone;另外allocflags_to_migratetype()是用于转换GFP标识为正确的迁移类型。

最后__alloc_pages_nodemask()分配内存页面的关键函数是:get_page_from_freelist()和__alloc_pages_slowpath(),其中get_page_from_freelist()最先用于尝试页面分配,如果分配失败的情况下,则会进一步调用__alloc_pages_slowpath()。__alloc_pages_slowpath()是用于慢速页面分配,允许等待和内存回收。由于__alloc_pages_slowpath()涉及其他内存管理机制,这里暂不深入分析。

故最后分析一下get_page_from_freelist()的实现:

【file:/mm/page_alloc.c】

/*

* get_page_from_freelist goes through the zonelist trying to allocate

* a page.

*/

static struct page *

get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,

struct zonelist *zonelist, int high_zoneidx, int alloc_flags,

struct zone *preferred_zone, int migratetype)

{

struct zoneref *z;

struct page *page = NULL;

int classzone_idx;

struct zone *zone;

nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */

int zlc_active = 0; /* set if using zonelist_cache */

int did_zlc_setup = 0; /* just call zlc_setup() one time */

classzone_idx = zone_idx(preferred_zone);

zonelist_scan:

/*

* Scan zonelist, looking for a zone with enough free.

* See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.

*/

for_each_zone_zonelist_nodemask(zone, z, zonelist,

high_zoneidx, nodemask) {

unsigned long mark;

if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&

!zlc_zone_worth_trying(zonelist, z, allowednodes))

continue;

if ((alloc_flags & ALLOC_CPUSET) &&

!cpuset_zone_allowed_softwall(zone, gfp_mask))

continue;

BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);

if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))

goto try_this_zone;

/*

* Distribute pages in proportion to the individual

* zone size to ensure fair page aging. The zone a

* page was allocated in should have no effect on the

* time the page has in memory before being reclaimed.

*/

if (alloc_flags & ALLOC_FAIR) {

if (!zone_local(preferred_zone, zone))

continue;

if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)

continue;

}

/*

* When allocating a page cache page for writing, we

* want to get it from a zone that is within its dirty

* limit, such that no single zone holds more than its

* proportional share of globally allowed dirty pages.

* The dirty limits take into account the zone"s

* lowmem reserves and high watermark so that kswapd

* should be able to balance it without having to

* write pages from its LRU list.

*

* This may look like it could increase pressure on

* lower zones by failing allocations in higher zones

* before they are full. But the pages that do spill

* over are limited as the lower zones are protected

* by this very same mechanism. It should not become

* a practical burden to them.

*

* XXX: For now, allow allocations to potentially

* exceed the per-zone dirty limit in the slowpath

* (ALLOC_WMARK_LOW unset) before going into reclaim,

* which is important when on a NUMA setup the allowed

* zones are together not big enough to reach the

* global limit. The proper fix for these situations

* will require awareness of zones in the

* dirty-throttling and the flusher threads.

*/

if ((alloc_flags & ALLOC_WMARK_LOW) &&

(gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))

goto this_zone_full;

mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];

if (!zone_watermark_ok(zone, order, mark,

classzone_idx, alloc_flags)) {

int ret;

if (IS_ENABLED(CONFIG_NUMA) &&

!did_zlc_setup && nr_online_nodes > 1) {

/*

* we do zlc_setup if there are multiple nodes

* and before considering the first zone allowed

* by the cpuset.

*/

allowednodes = zlc_setup(zonelist, alloc_flags);

zlc_active = 1;

did_zlc_setup = 1;

}

if (zone_reclaim_mode == 0 ||

!zone_allows_reclaim(preferred_zone, zone))

goto this_zone_full;

/*

* As we may have just activated ZLC, check if the first

* eligible zone has failed zone_reclaim recently.

*/

if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&

!zlc_zone_worth_trying(zonelist, z, allowednodes))

continue;

ret = zone_reclaim(zone, gfp_mask, order);

switch (ret) {

case ZONE_RECLAIM_NOSCAN:

/* did not scan */

continue;

case ZONE_RECLAIM_FULL:

/* scanned but unreclaimable */

continue;

default:

/* did we reclaim enough */

if (zone_watermark_ok(zone, order, mark,

classzone_idx, alloc_flags))

goto try_this_zone;

/*

* Failed to reclaim enough to meet watermark.

* Only mark the zone full if checking the min

* watermark or if we failed to reclaim just

* 1<<order pages or else the page allocator

* fastpath will prematurely mark zones full

* when the watermark is between the low and

* min watermarks.

*/

if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||

ret == ZONE_RECLAIM_SOME)

goto this_zone_full;

continue;

}

}

try_this_zone:

page = buffered_rmqueue(preferred_zone, zone, order,

gfp_mask, migratetype);

if (page)

break;

this_zone_full:

if (IS_ENABLED(CONFIG_NUMA))

zlc_mark_zone_full(zonelist, z);

}

if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {

/* Disable zlc cache for second zonelist scan */

zlc_active = 0;

goto zonelist_scan;

}

if (page)

/*

* page->pfmemalloc is set when ALLOC_NO_WATERMARKS was

* necessary to allocate the page. The expectation is

* that the caller is taking steps that will free more

* memory. The caller should avoid the page being used

* for !PFMEMALLOC purposes.

*/

page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);

return page;

}

该函数主要是遍历各个内存管理区列表zonelist以尝试页面申请。其中for_each_zone_zonelist_nodemask()则是用于遍历zonelist的,每个内存管理区尝试申请前,都将检查内存管理区是否有可分配的内存空间、根据alloc_flags判断当前CPU是否允许在该内存管理区zone中申请以及做watermark水印检查以判断zone中的内存是否足够等。这部分的功能实现将在后面详细分析,当前主要聚焦在伙伴管理算法的实现。

不难找到真正用于分配内存页面的函数为buffered_rmqueue(),其实现:

【file:/mm/page_alloc.c】

/*

* Really, prep_compound_page() should be called from __rmqueue_bulk(). But

* we cheat by calling it from here, in the order > 0 path. Saves a branch

* or two.

*/

static inline

struct page *buffered_rmqueue(struct zone *preferred_zone,

struct zone *zone, int order, gfp_t gfp_flags,

int migratetype)

{

unsigned long flags;

struct page *page;

int cold = !!(gfp_flags & __GFP_COLD);

again:

if (likely(order == 0)) {

struct per_cpu_pages *pcp;

struct list_head *list;

local_irq_save(flags);

pcp = &this_cpu_ptr(zone->pageset)->pcp;

list = &pcp->lists[migratetype];

if (list_empty(list)) {

pcp->count += rmqueue_bulk(zone, 0,

pcp->batch, list,

migratetype, cold);

if (unlikely(list_empty(list)))

goto failed;

}

if (cold)

page = list_entry(list->prev, struct page, lru);

else

page = list_entry(list->next, struct page, lru);

list_del(&page->lru);

pcp->count--;

} else {

if (unlikely(gfp_flags & __GFP_NOFAIL)) {

/*

* __GFP_NOFAIL is not to be used in new code.

*

* All __GFP_NOFAIL callers should be fixed so that they

* properly detect and handle allocation failures.

*

* We most definitely don"t want callers attempting to

* allocate greater than order-1 page units with

* __GFP_NOFAIL.

*/

WARN_ON_ONCE(order > 1);

}

spin_lock_irqsave(&zone->lock, flags);

page = __rmqueue(zone, order, migratetype);

spin_unlock(&zone->lock);

if (!page)

goto failed;

__mod_zone_freepage_state(zone, -(1 << order),

get_pageblock_migratetype(page));

}

__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));

__count_zone_vm_events(PGALLOC, zone, 1 << order);

zone_statistics(preferred_zone, zone, gfp_flags);

local_irq_restore(flags);

VM_BUG_ON_PAGE(bad_range(zone, page), page);

if (prep_new_page(page, order, gfp_flags))

goto again;

return page;

failed:

local_irq_restore(flags);

return NULL;

}

if (likely(order == 0))如果申请的内存页面处于伙伴管理算法中的0阶,即只申请一个内存页面时,则首先尝试从冷热页中申请,若申请失败则继而调用rmqueue_bulk()去申请页面至冷热页管理列表中,继而再从冷热页列表中获取;如果申请多个页面则会通过__rmqueue()直接从伙伴管理中申请。

__rmqueue()的实现:

【file:/mm/page_alloc.c】

/*

* Do the hard work of removing an element from the buddy allocator.

* Call me with the zone->lock already held.

*/

static struct page *__rmqueue(struct zone *zone, unsigned int order,

int migratetype)

{

struct page *page;

retry_reserve:

page = __rmqueue_smallest(zone, order, migratetype);

if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {

page = __rmqueue_fallback(zone, order, migratetype);

/*

* Use MIGRATE_RESERVE rather than fail an allocation. goto

* is used because __rmqueue_smallest is an inline function

* and we want just one call site

*/

if (!page) {

migratetype = MIGRATE_RESERVE;

goto retry_reserve;

}

}

trace_mm_page_alloc_zone_locked(page, order, migratetype);

return page;

}

该函数里面有两个关键函数:__rmqueue_smallest()和__rmqueue_fallback()。

先行分析一下__rmqueue_fallback():

【file:/mm/page_alloc.c】

/*

* Go through the free lists for the given migratetype and remove

* the smallest available page from the freelists

*/

static inline

struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,

int migratetype)

{

unsigned int current_order;

struct free_area *area;

struct page *page;

/* Find a page of the appropriate size in the preferred list */

for (current_order = order; current_order < MAX_ORDER; ++current_order) {

area = &(zone->free_area[current_order]);

if (list_empty(&area->free_list[migratetype]))

continue;

page = list_entry(area->free_list[migratetype].next,

struct page, lru);

list_del(&page->lru);

rmv_page_order(page);

area->nr_free--;

expand(zone, page, order, current_order, area, migratetype);

return page;

}

return NULL;

}

该函数实现了分配算法的核心功能,首先for()循环其由指定的伙伴管理算法链表order阶开始,如果该阶的链表不为空,则直接通过list_del()从该链表中获取空闲页面以满足申请需要;如果该阶的链表为空,则往更高一阶的链表查找,直到找到链表不为空的一阶,至于若找到了最高阶仍为空链表,则申请失败;否则将在找到链表不为空的一阶后,将空闲页面块通过list_del()从链表中摘除出来,然后通过expand()将其对等拆分开,并将拆分出来的一半空闲部分挂接至低一阶的链表中,直到拆分至恰好满足申请需要的order阶,最后将得到的满足要求的页面返回回去。至此,页面已经分配到了。

至于__rmqueue_fallback():

【file:/mm/page_alloc.c】

/* Remove an element from the buddy allocator from the fallback list */

static inline struct page *

__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)

{

struct free_area *area;

int current_order;

struct page *page;

int migratetype, new_type, i;

/* Find the largest possible block of pages in the other list */

for (current_order = MAX_ORDER-1; current_order >= order;

--current_order) {

for (i = 0;; i++) {

migratetype = fallbacks[start_migratetype][i];

/* MIGRATE_RESERVE handled later if necessary */

if (migratetype == MIGRATE_RESERVE)

break;

area = &(zone->free_area[current_order]);

if (list_empty(&area->free_list[migratetype]))

continue;

page = list_entry(area->free_list[migratetype].next,

struct page, lru);

area->nr_free--;

new_type = try_to_steal_freepages(zone, page,

start_migratetype,

migratetype);

/* Remove the page from the freelists */

list_del(&page->lru);

rmv_page_order(page);

expand(zone, page, order, current_order, area,

new_type);

trace_mm_page_alloc_extfrag(page, order, current_order,

start_migratetype, migratetype, new_type);

return page;

}

}

return NULL;

}

其主要是向其他迁移类型中获取内存。较正常的伙伴算法不同,其向迁移类型的内存申请内存页面时,是从最高阶开始查找的,主要是从大块内存中申请可以避免更少的碎片。如果尝试完所有的手段仍无法获得内存页面,则会从MIGRATE_RESERVE列表中获取。这部分暂不深入,后面再详细分析。

毕了,至此伙伴管理算法的分配部分暂时分析完毕。

以上是 Linux3.14.12内存管理笔记【伙伴管理算法(5)】 的全部内容, 来源链接: utcz.com/z/514638.html

回到顶部