多线程进阶——JUC并发编程之CyclicBarrier源码一探究竟
百度翻译大概意思就是:
一种同步辅助程序,允许一组线程相互等待到达一个公共的屏障点。CyclicBarrier在涉及固定大小的线程方的程序中非常有用,这些线程方有时必须相互等待。这个屏障被称为循环屏障,因为它可以在等待的线程被释放后重新使用。
CyclicBarrier支持可选的Runnable命令,该命令在参与方中的最后一个线程到达后,但在释放任何线程之前,每个屏障点运行一次。此屏障操作有助于在任何参与方继续之前更新共享状态。
动图演示:
在上文中我们分析完了 CountDownLatch源码,可以理解为减法计数器,是基于AQS的共享模式使用,而CyclicBarrier相比于CountDownLatch 来说,要简单很多,它类似于加法计数器,在源码中使用 ReentrantLock 和 Condition 的组合来使用。
2、案例演示 CyclicBarrier
//加法计数器public class CyclicBarrierDemo {
public static void main(String[] args) {
/**
* 集齐5名队员,开始游戏
*/
// 开始战斗的线程
CyclicBarrier cyclicBarrier = new CyclicBarrier(5,()->{
System.out.println("欢迎来到王者荣耀,敌军还有五秒到达战场!全军出击!");
});
for (int i = 1; i <=5 ; i++) {
final int temp = i;
// lambda能操作到 i 吗
new Thread(()->{
System.out.println(Thread.currentThread().getName()+"第"+temp+"个进入游戏!");
try {
cyclicBarrier.await(); // 等待
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
}).start();
}
}
}
3、入手构造器
//构造器1/** 创建一个新的CyclicBarrier,它将在给定数量的参与方(线程)等待时触发,并在触发屏障时执行给定的屏障操作,由最后一个进入屏障的线程执行 */
public CyclicBarrier(int parties, Runnable barrierAction) {
if (parties <= 0) throw new IllegalArgumentException();
this.parties = parties;
this.count = parties;
this.barrierCommand = barrierAction;
}
//构造器2
/** 创建一个新的CyclicBarrier,当给定数量的参与方(线程)在等待它时,它将跳闸,并且在屏障跳闸时不执行预定义的操作 */
public CyclicBarrier(int parties) {
this(parties, null);
}
其中构造器1为核心构造器,在这里你可以指定 parties 本局游戏的参与者的数量(要拦截的线程数)以及 barrierAction 本局游戏结束时要执行的任务。
3.1、入手成员变量
/** 同步操作锁 */ private final ReentrantLock lock = new ReentrantLock();
/** 线程拦截器 */
private final Condition trip = lock.newCondition();
/** 每次拦截的线程数 */
private final int parties;
/* 换代前执行的任务 */
private final Runnable barrierCommand;
/** 表示栅栏的当前代 类似代表本局游戏*/
private Generation generation = new Generation();
/** 计数器 */
private int count;
/** 静态内部类Generation */
private static class Generation {
boolean broken = false;
}
3.2、入手核心方法
下面分析这两个方法,分别为【非定时等待】和【定时等待】!
//非定时等待public int await() throws InterruptedException, BrokenBarrierException {
try {
return dowait(false, 0L);
} catch (TimeoutException toe) {
throw new Error(toe); // cannot happen
}
}
//定时等待
public int await(long timeout, TimeUnit unit)throws InterruptedException,
BrokenBarrierException,
TimeoutException {
return dowait(true, unit.toNanos(timeout));
}
可以看到,最终两个方法都走【dowait】 方法,只不过参数不同。下面我们重点看看这个方法到底做了哪些事情。
//核心等待方法 private int dowait(boolean timed, long nanos)
throws InterruptedException, BrokenBarrierException,
TimeoutException {
final ReentrantLock lock = this.lock;
lock.lock();//加锁操作
try {
final Generation g = generation;
//检查当前栅栏是否被打翻
if (g.broken)
throw new BrokenBarrierException();
//检查当前线程是否被中断
if (Thread.interrupted()) {
breakBarrier();
throw new InterruptedException();
}
//每次都将计数器的值-1
int index = --count;
//计数器的值减为0,则需要唤醒所有线程并转换到下一代
if (index == 0) { // tripped
boolean ranAction = false;
try {
//唤醒所有线程前先执行指定的任务
final Runnable command = barrierCommand;
if (command != null)
command.run();
ranAction = true;
//唤醒所有线程并转换到下一代
nextGeneration();
return 0;
} finally {
//确保在任务未成功执行时能将所有线程唤醒
if (!ranAction)
breakBarrier();
}
}
//如果计数器不为0 则执行此循环
// loop until tripped, broken, interrupted, or timed out
for (;;) {
try {
//根据传入的参数来觉得是定时等待还是非定时等待
if (!timed)
trip.await();
else if (nanos > 0L)
nanos = trip.awaitNanos(nanos);
} catch (InterruptedException ie) {
//若当前线程在等待期间被中断则打翻栅栏唤醒其它线程
if (g == generation && ! g.broken) {
breakBarrier();
throw ie;
} else {
// 若在捕获中断异常前已经完成在栅栏上的等待,则直接调用中断操作
Thread.currentThread().interrupt();
}
}
//如果线程因为打翻栅栏操作而被唤醒则抛出异常
if (g.broken)
throw new BrokenBarrierException();
//如果线程因为换代操作而被唤醒则返回计数器的值
if (g != generation)
return index;
//如果线程因为时间到了而被唤醒则打翻栅栏并抛出异常
if (timed && nanos <= 0L) {
breakBarrier();
throw new TimeoutException();
}
}
} finally {
lock.unlock();//最终解锁
}
}
分两步分析,首先计数器的值减为0的情况,和计数器不为0的情况,首先第一种情况下:
第二种情况,计数器不为0,则进入自旋for(;;):
最后,我们来看看怎么重置一个栅栏:
将屏障重置为初始状态。如果任何一方目前在隔离墙等候,他们将带着BrokenBarrierException返回。
请注意,由于其他原因发生中断后的重置可能很复杂;线程需要以其他方式重新同步,并选择一种方式执行重置。
最好是创建一个新的屏障供以后使用
public void reset() { final ReentrantLock lock = this.lock;
lock.lock();
try {
breakBarrier(); // break the current generation
nextGeneration(); // start a new generation
} finally {
lock.unlock();
}
}
测试reset代码:
首先,打破栅栏,那意味着所有等待的线程(5个等待的线程)会唤醒,【await 】方法会通过抛出【BrokenBarrierException】异常返回。然后开启新一代,重置了 count 和 generation,相当于一切归0了。
4、CyclicBarrier 与 CountDownLatch 的区别
相同点:
1、都可以实现一组线程在到达某个条件之前进行等待
2、它们内部都有一个计数器,当计数器的值不断减为0的时候,所有阻塞的线程都会被唤醒!
不同点:
1、CyclicBarrier 的计数器是由它自己来控制,而CountDownLatch 的计数器则是由使用则来控制
2、在CyclicBarrier 中线程调用 await方法不仅会将自己阻塞,还会将计数器减1,而在CountDownLatch中线程调用 await方法只是将自己阻塞而不会减少计数器的值。
3、另外,CountDownLatch 只能拦截一轮,而CyclicBarrier 可以实现循环拦截。一般来说CyclicBarrier 可以实现 CountDownLatch的功能,而反之不能。
以上是 多线程进阶——JUC并发编程之CyclicBarrier源码一探究竟 的全部内容, 来源链接: utcz.com/z/513887.html