自己用C语言写NXPS32K116serialbootloader

编程

了解更多关于bootloader 的C语言实现,请加我QQ: 1273623966 (验证信息请填 bootloader),欢迎咨询或定制bootloader(在线升级程序)。

 

  到目前为止,“自己用C语言写 xxx serial bootloader"已经有7篇博文了,7篇博文,7款不同的MCU。今天给大家介绍第8款MCU的串口bootloader, 也就是NXP S32K116 serial boot-loader。 NXP S32K116 是ARM Cortex-M0 内核的32-bit MCU。 有丰富的外设,卓越的性能以及成熟的工具链。Processor Expert更是非常不错,我的这个bootloader 的底层驱动都是用Processor Expert自动生成的。我只需要写中间层和bootloader应用层的代码。看完S32Kxxx datasheet和S32Kxxx reference manual,才开始写bootloader,整个实现过程除了"bootloader jumping to application"卡了一段时间,一切都非常顺利。Processor Expert确实可以节省不少时间。但NXP S32Kxxx 开发环境也有不足的地方,比如IDE S32DS (S32 design studio) 非常慢,电脑配置不高的话容易卡死。还有就是S32DS 不支持simulator debug。 一定要有硬件板才可以debug.

  Bootloader 是独立的一个程序,和Application分别存储在ROM中不同的区间,不能有重叠。我的S32K116 bootloader 是放置在头部,区间范围为:0x00000000~0x00003FFF. Application的区间范围为:0x00004000~0x0001FFFF. 为此分别对Bootloader 和Application的linker script做了一下改动。

Bootloader linker script 的改动如下:

MEMORY

{

/* Flash */

m_interrupts (RX) : ORIGIN = 0x00000000, LENGTH = 0x000000C0

m_flash_config (RX) : ORIGIN = 0x00000400, LENGTH = 0x00000010

m_text (RX) : ORIGIN = 0x00000410, LENGTH = 0x00003BF0

/* SRAM_L */

/* SRAM_U */

m_data (RW) : ORIGIN = 0x20000000, LENGTH = 0x000020C0

m_data_2 (RW) : ORIGIN = 0x200020C0, LENGTH = 0x00001740

}

Application linker script 的改动如下:

MEMORY

{

/* Flash */

m_interrupts (RX) : ORIGIN = 0x00004000, LENGTH = 0x000000C0

m_flash_config (RX) : ORIGIN = 0x00004400, LENGTH = 0x00000010

m_text (RX) : ORIGIN = 0x00004410, LENGTH = 0x0001BBF0

/* SRAM_L */

m_custom (RW) : ORIGIN = 0x1FFFFC00, LENGTH = 0x00000400

/* SRAM_U */

m_data (RW) : ORIGIN = 0x20000000, LENGTH = 0x000020C0

m_data_2 (RW) : ORIGIN = 0x200020C0, LENGTH = 0x00001740

}

  Bootloader实现Application的更新需要上位机的协助,上位机一般是PC端的host 软件工具。我的S32K116 bootloader 使用的上位机是HyperTerminal.  HyperTerminal 可以建立串口连接,传输Application 的Hex文件。并可以配置传输方式为每发送一行delay 50ms, 这样可以预留时间让bootloader处理数据完成烧写。使用HyperTerminal可以省掉开发专门的上位机时间,但是由于传送方式是纯文本发送,没有使用协议,没有应答机制。某种意义上讲是不可靠的。并且速度慢,一般不可以用于量产产品,只能用于学习或内部人员使用。

  Bootloader程序是MCU的程序,MCU一上电就进入Bootloader。Bootloader程序先完成CLOCK, PIN, UART 初始化,然后就运行一个Bootloader状态机,状态机如下所示:

switch (bootState)

{

case BOOT_HANDSHAKE:

mbootStatus = M_Bootloader_Handshake();

if (mbootStatus == BT_OK)

{

bootState = BOOT_INIT;

}

elseif (mbootStatus == BT_HS_TIMEOUT)

{

mbootStatus = BT_DONE;

bootState = BOOT_JUMPTO_APP;

}

break;

case BOOT_INIT:

LPUART_DRV_SendDataPolling(INST_LPUART1,(uint8_t*)bootInitMsg,strlen((char*)bootInitMsg));

mbootStatus = M_Bootloader_Init();

if (mbootStatus == BT_OK)

{

LPUART_DRV_SendDataPolling(INST_LPUART1,(uint8_t*)bootJobDoneMsg,strlen((char*)bootJobDoneMsg));

bootState = BOOT_ERASE;

}

break;

case BOOT_ERASE:

LPUART_DRV_SendDataPolling(INST_LPUART1,(uint8_t*)bootEraseMsg,strlen((char*)bootEraseMsg));

mbootStatus = M_Bootloader_Erase();

if (mbootStatus == BT_OK)

{

LPUART_DRV_SendDataPolling(INST_LPUART1,(uint8_t*)bootJobDoneMsg,strlen((char*)bootJobDoneMsg));

bootState = BOOT_RECEIVE;

LPUART_DRV_SendDataPolling(INST_LPUART1,(uint8_t*)bootPrgmMsg,strlen((char*)bootPrgmMsg));

}

break;

case BOOT_RECEIVE:

mbootStatus = M_Bootloader_Receive();

if (mbootStatus == BT_OK)

{

LPUART_DRV_SendDataPolling(INST_LPUART1,(uint8_t*)bootFbHdrMsg,strlen((char*)bootFbHdrMsg));

LPUART_DRV_SendDataPolling(INST_LPUART1,(uint8_t*)lineRcdBuf,LINE_RECORD_BUF_SIZE);

bootState = BOOT_PROGRAM;

}

break;

case BOOT_PROGRAM:

mbootStatus = M_Bootloader_Write();

if (mbootStatus == BT_BUSY)

{

bootState = BOOT_RECEIVE;

}

elseif (mbootStatus == BT_OK)

{

bootState = BOOT_PREJUMP;

}

break;

case BOOT_PREJUMP:

mbootStatus = Prejump_To_Application();

if (mbootStatus == BT_OK)

{

bootState = BOOT_JUMPTO_APP;

LPUART_DRV_SendDataPolling(INST_LPUART1,(uint8_t*)bootPrgmDoneMsg,strlen((char*)bootPrgmDoneMsg));

}

break;

case BOOT_JUMPTO_APP:

mbootStatus = BT_DONE;

//LPUART_DRV_Deinit(INST_LPUART1);

//Jump_To_Application(*((uint32_t*)APP_START_ADDRESS),*((uint32_t*)APP_JUMP_ADDRESS));

break;

default:

break;

}

总共7个状态:BOOT_HANDSHAKE,BOOT_INIT,BOOT_ERASE,BOOT_RECEIVE,BOOT_PROGRAM,BOOT_PREJUMP,BOOT_JUMPTO_APP。
BOOT_HANDSHAKE:初始状态,数秒6秒,收到更新请求就切换状态为BOOT_INIT,超时就切换状态为BOOT_JUMPTO_APP,出错就重启。                             BOOT_INIT: 初始化flash, 成功就切换状态为BOOT_ERASE,出错就重启。                                                    BOOT_ERASE:擦除flash的Application区间,成功就切换状态为BOOT_RECEIVE,出错就重启。                                      BOOT_RECEIVE:接收Hex数据,每成功接收一行数据,就切换状态为BOOT_PROGRAM,出错就重启。                                                                                  BOOT_PROGRAM:解析数据,数据ready就完成烧写,如果数据是最后一行数据,就切换状态为BOOT_PREJUMP,否则切回BOOT_RECEIVE,出错就重启。          BOOT_PREJUMP: 检查数据并处理未处理的数据,成功则切换状态为BOOT_JUMPTO_APP,出错就重启。                                 BOOT_JUMPTO_APP: 设置Application中断向量,设置Application的Stack首地址。跳转到Application Reset 向量地址。                                    

Jump_To_Application这个函数功能很简单,却花了很多时间,Application已经烧写完成,始终无法跳转过去,包括NXP官网上bootloader例程的跳转方法也不行,后来经过不断试错,总算成功了,最终实现如下:

void Jump_To_Application(uint32_t userSP)

{

void (*entry)(void);

uint32_t pc;

if(userSP == 0xFFFFFFFF)

{

return;

}

else

{

/* Set up stack pointer */

__asm("msr msp, r0");

__asm("msr psp, r0");

/* Relocate vector table */

S32_SCB->VTOR = (uint32_t)APP_START_ADDRESS;

/* Jump to application PC */

pc = *((volatile uint32_t *)(APP_START_ADDRESS + 4));

entry = (void (*)(void))pc;

entry();

}

}

Bootloader 的开发环境:

IDE: S32DS

Compiler: S32DS 自带的gcc

Hardware:  S32K116 EVB

SDK:   S32DS/S32SDK_S32K116_EAR_1.8.7

以上是 自己用C语言写NXPS32K116serialbootloader 的全部内容, 来源链接: utcz.com/z/513815.html

回到顶部