Linux3.14.12内存管理笔记【伙伴管理算法(4)】

编程

此处承接前面未深入分析的页面释放部分,主要详细分析伙伴管理算法中页面释放的实现。页面释放的函数入口是__free_page(),其实则是一个宏定义。

具体实现:

【file:/include/linux/gfp.h】

#define __free_page(page) __free_pages((page), 0)

而__free_pages()的实现:

【file:/mm/page_alloc.c】

void __free_pages(struct page *page, unsigned int order)

{

if (put_page_testzero(page)) {

if (order == 0)

free_hot_cold_page(page, 0);

else

__free_pages_ok(page, order);

}

}

其中put_page_testzero()是对page结构的_count引用计数做原子减及测试,用于检查内存页面是否仍被使用,如果不再使用,则进行释放。其中order表示页面数量,如果释放的是单页,则会调用free_hot_cold_page()将页面释放至per-cpu page缓存中,而不是伙伴管理算法;真正的释放至伙伴管理算法的是__free_pages_ok(),同时也是用于多个页面释放的情况。

此处接着则由free_hot_cold_page()开始分析:

【file:/mm/page_alloc.c】

/*

* Free a 0-order page

* cold == 1 ? free a cold page : free a hot page

*/

void free_hot_cold_page(struct page *page, int cold)

{

struct zone *zone = page_zone(page);

struct per_cpu_pages *pcp;

unsigned long flags;

int migratetype;

if (!free_pages_prepare(page, 0))

return;

migratetype = get_pageblock_migratetype(page);

set_freepage_migratetype(page, migratetype);

local_irq_save(flags);

__count_vm_event(PGFREE);

/*

* We only track unmovable, reclaimable and movable on pcp lists.

* Free ISOLATE pages back to the allocator because they are being

* offlined but treat RESERVE as movable pages so we can get those

* areas back if necessary. Otherwise, we may have to free

* excessively into the page allocator

*/

if (migratetype >= MIGRATE_PCPTYPES) {

if (unlikely(is_migrate_isolate(migratetype))) {

free_one_page(zone, page, 0, migratetype);

goto out;

}

migratetype = MIGRATE_MOVABLE;

}

pcp = &this_cpu_ptr(zone->pageset)->pcp;

if (cold)

list_add_tail(&page->lru, &pcp->lists[migratetype]);

else

list_add(&page->lru, &pcp->lists[migratetype]);

pcp->count++;

if (pcp->count >= pcp->high) {

unsigned long batch = ACCESS_ONCE(pcp->batch);

free_pcppages_bulk(zone, batch, pcp);

pcp->count -= batch;

}

out:

local_irq_restore(flags);

}

先看一下free_pages_prepare()的实现:

【file:/mm/page_alloc.c】

static bool free_pages_prepare(struct page *page, unsigned int order)

{

int i;

int bad = 0;

trace_mm_page_free(page, order);

kmemcheck_free_shadow(page, order);

if (PageAnon(page))

page->mapping = NULL;

for (i = 0; i < (1 << order); i++)

bad += free_pages_check(page + i);

if (bad)

return false;

if (!PageHighMem(page)) {

debug_check_no_locks_freed(page_address(page),

PAGE_SIZE << order);

debug_check_no_obj_freed(page_address(page),

PAGE_SIZE << order);

}

arch_free_page(page, order);

kernel_map_pages(page, 1 << order, 0);

return true;

}

其中trace_mm_page_free()用于trace追踪机制;而kmemcheck_free_shadow()用于内存检测工具kmemcheck,如果未定义CONFIG_KMEMCHECK的情况下,它是一个空函数。接着后面的PageAnon()等都是用于检查页面状态的情况,以判断页面是否允许释放,避免错误释放页面。由此可知该函数主要作用是检查和调试。

接着回到free_hot_cold_page()函数中,get_pageblock_migratetype()和set_freepage_migratetype()分别是获取和设置页面的迁移类型,即设置到page->index;local_irq_save()和末尾的local_irq_restore()则用于保存恢复中断请求标识。

if (migratetype >= MIGRATE_PCPTYPES) {

if (unlikely(is_migrate_isolate(migratetype))) {

free_one_page(zone, page, 0, migratetype);

goto out;

}

migratetype = MIGRATE_MOVABLE;

}

这里面的MIGRATE_PCPTYPES用来表示每CPU页框高速缓存的数据结构中的链表的迁移类型数目,如果某个页面类型大于MIGRATE_PCPTYPES则表示其可挂到可移动列表中,如果迁移类型是MIGRATE_ISOLATE则直接将该其释放到伙伴管理算法中。

末尾部分:

    pcp = &this_cpu_ptr(zone->pageset)->pcp;

if (cold)

list_add_tail(&page->lru, &pcp->lists[migratetype]);

else

list_add(&page->lru, &pcp->lists[migratetype]);

pcp->count++;

if (pcp->count >= pcp->high) {

unsigned long batch = ACCESS_ONCE(pcp->batch);

free_pcppages_bulk(zone, batch, pcp);

pcp->count -= batch;

}

其中pcp表示内存管理区的每CPU管理结构,cold表示冷热页面,如果是冷页就将其挂接到对应迁移类型的链表尾,而若是热页则挂接到对应迁移类型的链表头。其中if (pcp->count >= pcp->high)判断值得注意,其用于如果释放的页面超过了每CPU缓存的最大页面数时,则将其批量释放至伙伴管理算法中,其中批量数为pcp->batch。

具体分析一下释放至伙伴管理算法的实现free_pcppages_bulk():

【file:/mm/page_alloc.c】

/*

* Frees a number of pages from the PCP lists

* Assumes all pages on list are in same zone, and of same order.

* count is the number of pages to free.

*

* If the zone was previously in an "all pages pinned" state then look to

* see if this freeing clears that state.

*

* And clear the zone's pages_scanned counter, to hold off the "all pages are

* pinned" detection logic.

*/

static void free_pcppages_bulk(struct zone *zone, int count,

struct per_cpu_pages *pcp)

{

int migratetype = 0;

int batch_free = 0;

int to_free = count;

spin_lock(&zone->lock);

zone->pages_scanned = 0;

while (to_free) {

struct page *page;

struct list_head *list;

/*

* Remove pages from lists in a round-robin fashion. A

* batch_free count is maintained that is incremented when an

* empty list is encountered. This is so more pages are freed

* off fuller lists instead of spinning excessively around empty

* lists

*/

do {

batch_free++;

if (++migratetype == MIGRATE_PCPTYPES)

migratetype = 0;

list = &pcp->lists[migratetype];

} while (list_empty(list));

/* This is the only non-empty list. Free them all. */

if (batch_free == MIGRATE_PCPTYPES)

batch_free = to_free;

do {

int mt; /* migratetype of the to-be-freed page */

page = list_entry(list->prev, struct page, lru);

/* must delete as __free_one_page list manipulates */

list_del(&page->lru);

mt = get_freepage_migratetype(page);

/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */

__free_one_page(page, zone, 0, mt);

trace_mm_page_pcpu_drain(page, 0, mt);

if (likely(!is_migrate_isolate_page(page))) {

__mod_zone_page_state(zone, NR_FREE_PAGES, 1);

if (is_migrate_cma(mt))

__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);

}

} while (--to_free && --batch_free && !list_empty(list));

}

spin_unlock(&zone->lock);

}

里面while大循环用于计数释放指定批量数的页面。其中释放方式是先自MIGRATE_UNMOVABLE迁移类型起(止于MIGRATE_PCPTYPES迁移类型),遍历各个链表统计其链表中页面数:

do {

batch_free++;

if (++migratetype == MIGRATE_PCPTYPES)

migratetype = 0;

list = &pcp->lists[migratetype];

} while (list_empty(list));

如果只有MIGRATE_PCPTYPES迁移类型的链表为非空链表,则全部页面将从该链表中释放。

后面的do{}while()里面,其先将页面从lru链表中去除,然后获取页面的迁移类型,通过__free_one_page()释放页面,最后使用__mod_zone_page_state()修改管理区的状态值。

着重分析一下__free_one_page()的实现:

【file:/mm/page_alloc.c】

/*

* Freeing function for a buddy system allocator.

*

* The concept of a buddy system is to maintain direct-mapped table

* (containing bit values) for memory blocks of various "orders".

* The bottom level table contains the map for the smallest allocatable

* units of memory (here, pages), and each level above it describes

* pairs of units from the levels below, hence, "buddies".

* At a high level, all that happens here is marking the table entry

* at the bottom level available, and propagating the changes upward

* as necessary, plus some accounting needed to play nicely with other

* parts of the VM system.

* At each level, we keep a list of pages, which are heads of continuous

* free pages of length of (1 << order) and marked with _mapcount

* PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)

* field.

* So when we are allocating or freeing one, we can derive the state of the

* other. That is, if we allocate a small block, and both were

* free, the remainder of the region must be split into blocks.

* If a block is freed, and its buddy is also free, then this

* triggers coalescing into a block of larger size.

*

* -- nyc

*/

static inline void __free_one_page(struct page *page,

struct zone *zone, unsigned int order,

int migratetype)

{

unsigned long page_idx;

unsigned long combined_idx;

unsigned long uninitialized_var(buddy_idx);

struct page *buddy;

VM_BUG_ON(!zone_is_initialized(zone));

if (unlikely(PageCompound(page)))

if (unlikely(destroy_compound_page(page, order)))

return;

VM_BUG_ON(migratetype == -1);

page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);

VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);

VM_BUG_ON_PAGE(bad_range(zone, page), page);

while (order < MAX_ORDER-1) {

buddy_idx = __find_buddy_index(page_idx, order);

buddy = page + (buddy_idx - page_idx);

if (!page_is_buddy(page, buddy, order))

break;

/*

* Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,

* merge with it and move up one order.

*/

if (page_is_guard(buddy)) {

clear_page_guard_flag(buddy);

set_page_private(page, 0);

__mod_zone_freepage_state(zone, 1 << order,

migratetype);

} else {

list_del(&buddy->lru);

zone->free_area[order].nr_free--;

rmv_page_order(buddy);

}

combined_idx = buddy_idx & page_idx;

page = page + (combined_idx - page_idx);

page_idx = combined_idx;

order++;

}

set_page_order(page, order);

/*

* If this is not the largest possible page, check if the buddy

* of the next-highest order is free. If it is, it's possible

* that pages are being freed that will coalesce soon. In case,

* that is happening, add the free page to the tail of the list

* so it's less likely to be used soon and more likely to be merged

* as a higher order page

*/

if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {

struct page *higher_page, *higher_buddy;

combined_idx = buddy_idx & page_idx;

higher_page = page + (combined_idx - page_idx);

buddy_idx = __find_buddy_index(combined_idx, order + 1);

higher_buddy = higher_page + (buddy_idx - combined_idx);

if (page_is_buddy(higher_page, higher_buddy, order + 1)) {

list_add_tail(&page->lru,

&zone->free_area[order].free_list[migratetype]);

goto out;

}

}

list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);

out:

zone->free_area[order].nr_free++;

}

于while (order < MAX_ORDER-1)前面主要是对释放的页面进行检查校验操作。而while循环内,通过__find_buddy_index()获取与当前释放的页面处于同一阶的伙伴页面索引值,同时藉此索引值计算出伙伴页面地址,并做伙伴页面检查以确定其是否可以合并,若否则退出;接着if (page_is_guard(buddy))用于对页面的debug_flags成员做检查,由于未配置CONFIG_DEBUG_PAGEALLOC,page_is_guard()固定返回false;则剩下的操作主要就是将页面从分配链中摘除,同时将页面合并并将其处于的阶提升一级。

退出while循环后,通过set_page_order()设置页面最终可合并成为的管理阶。最后判断当前合并的页面是否为最大阶,否则将页面放至伙伴管理链表的末尾,避免其过早被分配,得以机会进一步与高阶页面进行合并。末了,将最后的挂入的阶的空闲计数加1。

至此伙伴管理算法的页面释放完毕。

而__free_pages_ok()的页面释放实现调用栈则是:

__free_pages_ok()

—>free_one_page()

—>__free_one_page()

殊途同归,最终还是__free_one_page()来释放,具体的过程就不再仔细分析了。

以上是 Linux3.14.12内存管理笔记【伙伴管理算法(4)】 的全部内容, 来源链接: utcz.com/z/511832.html

回到顶部