linux中OTG识别到一个U盘后产生一个sg节点的全过程

编程

注:本篇文章暂时不做流程图,如果有需求后续补做。

1. 需要准备的源码文件列表:

base部分:

kernelasecore.c

kernelaseus.c

kernelasedd.c

kernelaseclass.c

kernelasedriver.c

 

头文件部分:

kernelincludelinuxdevice.h

kernelincludelinuxusb.h

kernelincludescsiscsi_host.h

 

usb核心部分:

kerneldriverusbcoreusb.c

kerneldriverusbcoredriver.c

kerneldriverusbcorehub.c 

kerneldriverusbcoredriver.c

kerneldriversusbcoremessage.c

kerneldriversusbcoregeneric.c

 

大容量设备部分:

kerneldriverusbstorageusb.c

 

scsi部分:

kerneldriverscsiscsi_scan.c

kerneldriverscsiscsi_sysfs.c

kerneldriverscsisg.c

 

2. 当一个U盘插入linux设备前发生的事情:

a. 最开始注册hub部分:

  需要关注注册驱动的有hub, usb, usb-storage。hub中用来做检测usb口是否有OTG的东东接入,usb是所有usb接入设备的老大哥,usb-storage只是usb的一个小老弟。

翻到 kerneldriverusbcoreusb.c 源码,这里先注册了hub驱动,再注册了usb驱动。

注:代码中“...”表示忽略这部分的代码,只需要关注贴出来的代码即可。

static int __init usb_init(void)

{

...

retval = usb_hub_init();//注册hub驱动

...

}  

先看hub注册过程,打开kerneldriverusbcorehub.c,

static struct usb_driver hub_driver = {

.name = "hub",

...

};

int usb_hub_init(void)

{

if (usb_register(&hub_driver) < 0) {

printk(KERN_ERR "%s: can"t register hub driver

",

usbcore_name);

return -1;

}

...

}

先关注usb_register,省略的部分后面再关注,打开kernelincludelinuxusb.h,

/* use a define to avoid include chaining to get THIS_MODULE & friends */

#define usb_register(driver)

usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)

然后进入kerneldriverusbcoredriver.c中的

int usb_register_driver(struct usb_driver *new_driver, struct module *owner,

const char *mod_name)

{

...

new_driver->drvwrap.driver.name = (char *) new_driver->name;

new_driver->drvwrap.driver.bus = &usb_bus_type;

new_driver->drvwrap.driver.probe = usb_probe_interface;

...

retval = driver_register(&new_driver->drvwrap.driver);

if (retval)

goto out;

...

}

EXPORT_SYMBOL_GPL(usb_register_driver); 

driver_register的实现在kernelasedriver.c中,

int driver_register(struct device_driver *drv)

{

...

ret = bus_add_driver(drv);

...

}

bus_add_driver的实现在kernelaseus.c中,

int bus_add_driver(struct device_driver *drv)

{

...

error = kobject_init_and_add(&priv->kobj, &driver_ktype, NULL,

"%s", drv->name);

...

klist_add_tail(&priv->knode_bus, &bus->p->klist_drivers);

...
     module_add_driver(drv->owner, drv);
...

}


这段处理大概就是把hub驱动加入到了一个链表中,因为链表就是拿来做数据操作,基本就是增加,删除,修改,遍历查找的,后续用到的时候再讲即可,hub注册部分就是这样了。

  

b. 注册usb部分:

打开kerneldriverusbcoreusb.c,就在注册hub驱动的下3行,注册了usb设备驱动,

static int __init usb_init(void)

{

...

retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);

...

}

然后进入kerneldriverusbcoredriver.c中的,

int usb_register_device_driver(struct usb_device_driver *new_udriver,

struct module *owner)

{

...

new_udriver->drvwrap.driver.name = (char *) new_udriver->name;

new_udriver->drvwrap.driver.bus = &usb_bus_type;

new_udriver->drvwrap.driver.probe = usb_probe_device;

...

retval = driver_register(&new_udriver->drvwrap.driver);

...

}

EXPORT_SYMBOL_GPL(usb_register_device_driver);

 又到了driver_register,最后也就是把usb设备驱动添加到一个链表中,等待着遍历执行的时刻。

 

c. 注册usb-storage部分:

打开usbstorageusb.c,这里注册了usb-storage的驱动,这个驱动就是与U盘节点有关的。

static struct usb_driver usb_storage_driver = {

.name = "usb-storage",

...

};

module_usb_driver(usb_storage_driver);

可以看看它的实现,打开kernelincludelinuxusb.h,

#define module_usb_driver(__usb_driver) 

module_driver(__usb_driver, usb_register,

usb_deregister)

可以在kernelincludelinuxdevice.h查看module_driver的实现,

#define module_driver(__driver, __register, __unregister, ...) 

static int __init __driver##_init(void)

{

return __register(&(__driver) , ##__VA_ARGS__);

}

module_init(__driver##_init);

static void __exit __driver##_exit(void)

{

__unregister(&(__driver) , ##__VA_ARGS__);

}

module_exit(__driver##_exit);  

 就是一个宏,注册用usb_register,反向注册用usb_deregister,然后再module_init它,就会在开机的时候执行了。至于usb_register,最后也就是把usb-storage驱动添加到一个链表中,等待着遍历执行的时刻。

 

3. 当一个U盘插入linux设备后:

a. 需要有一个线程等待检测U盘插入,重新回到kerneldriverusbcorehub.c,

int usb_hub_init(void)

{

...

khubd_task = kthread_run(hub_thread, NULL, "khubd");

...

}

  

static int hub_thread(void *__unused)

{

...

do {

hub_events();

wait_event_freezable(khubd_wait,

!list_empty(&hub_event_list) ||

kthread_should_stop());

} while (!kthread_should_stop() || !list_empty(&hub_event_list));

...

}

  

static void hub_events(void)

{

...

while (1) {
...            
             hdev = hub->hdev; //这里有一段获取usb驱动设备过程,忽略,因为我还没仔细研究过

...

if (connect_change)

hub_port_connect_change(hub, i,

portstatus, portchange);

}

...

}

 

static void hub_port_connect_change(struct usb_hub *hub, int port1,

u16 portstatus, u16 portchange)

{

...

/* Run it through the hoops (find a driver, etc) */

if (!status) {

status = usb_new_device(udev);

...

}

  

int usb_new_device(struct usb_device *udev)

{

...

err = device_add(&udev->dev);

...

}

 

进入到kernelasecore.c中,

int device_add(struct device *dev)

{

...

bus_probe_device(dev);

...

}

  

 进入到kernelaseus.c中,

void bus_probe_device(struct device *dev)

{

...

ret = device_attach(dev);

...

}

  

 进入到kernelasedd.c中,

int device_attach(struct device *dev)

{
...

ret = bus_for_each_drv(dev->bus, NULL, dev, __device_attach);

...
}

  

int bus_for_each_drv(struct bus_type *bus, struct device_driver *start,

void *data, int (*fn)(struct device_driver *, void *))

{
...

error = fn(drv, data);

...

}

  

static int __device_attach(struct device_driver *drv, void *data)

{

...

return driver_probe_device(drv, dev);

}

  

int driver_probe_device(struct device_driver *drv, struct device *dev)

{

...

ret = really_probe(dev, drv);

....

}

  

static int really_probe(struct device *dev, struct device_driver *drv)

{

...

} else if (drv->probe) {

ret = drv->probe(dev);

if (ret)

goto probe_failed;

}

...

}

  之前链表插入的usb设备驱动的probe就在此刻被遍历出来,然后调用。

回顾插入的函数指针,打开kerneldriverusbcoredriver.c,

int usb_register_device_driver(struct usb_device_driver *new_udriver,

struct module *owner)

{

...

new_udriver->drvwrap.driver.probe = usb_probe_device;

...

}

进入 

static int usb_probe_device(struct device *dev)

{

struct usb_device_driver *udriver = to_usb_device_driver(dev->driver);

...

error = udriver->probe(udev);

...

}

 

由kernelincludelinuxusb.h中:

#define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, 

drvwrap.driver)

和kerneldriverusbcoreusb.c中:

retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);

可知

这里的probe会调用usb_generic_driver的probe,因为container_of的作用就是把指向d的指针返回,返回的指针即为&usb_generic_driver。

 

打开kerneldriversusbcoregeneric.c,

struct usb_device_driver usb_generic_driver = {

.name = "usb",

.probe = generic_probe,

...

};

  

static int generic_probe(struct usb_device *udev)

{

...

err = usb_set_configuration(udev, c);

...

}

 

打开kerneldriversusbcoremessage.c,

int usb_set_configuration(struct usb_device *dev, int configuration)

{

...

ret = device_add(&intf->dev);

...

}

之前提到过device_add->bus_probe_device->device_attach->__device_attach->driver_probe_device->really_probe->传入的设备对应的驱动probe。

在usb_set_configuration或者之前,肯定有一个获取usb-storage驱动信息的过程,总之这次的probe会进入usb_probe_interface,驱动就是之前注册的usb-storage。

打开kerneldriverusbcoredriver.c,

static int usb_probe_interface(struct device *dev)

{
   struct usb_driver *driver = to_usb_driver(dev->driver);

...

error = driver->probe(intf, id);

...

}

同之前container_of返回指向p的指针分析的一样,这次返回的指针是&usb_storage_driver。

打开kerneldriverusbstorageusb.c,

static int storage_probe(struct usb_interface *intf,

const struct usb_device_id *id)

{

...
     result = usb_stor_probe1(&us, intf, id, unusual_dev);
...

result = usb_stor_probe2(us);

...

}

static struct usb_driver usb_storage_driver = {

.name = "usb-storage",
     .probe = storage_probe,

...

};

  

int usb_stor_probe1(struct us_data **pus,

struct usb_interface *intf,

const struct usb_device_id *id,

struct us_unusual_dev *unusual_dev)

{

...

INIT_DELAYED_WORK(&us->scan_dwork, usb_stor_scan_dwork);

...

}

 

int usb_stor_probe2(struct us_data *us)

{

...

queue_delayed_work(system_freezable_wq, &us->scan_dwork,

delay_use * HZ);

...

}

 这段就是usb_stor_probe1中注册了一个延时的工作队列,然后usb_stor_probe2唤醒这个工作队列注册的函数usb_stor_scan_dwork工作。

  

static void usb_stor_scan_dwork(struct work_struct *work)

{

...

scsi_scan_host(us_to_host(us));

...

}

  

下一步就是scsi子系统的工作了。

 

b. sg节点的创建。

打开kerneldriverscsiscsi_scan.c,

void scsi_scan_host(struct Scsi_Host *shost)

{

...

async_schedule(do_scan_async, data);

...

}

  

static void do_scan_async(void *_data, async_cookie_t c)

{

...

scsi_finish_async_scan(data);

}

  

static void scsi_finish_async_scan(struct async_scan_data *data)

{

...

scsi_sysfs_add_devices(shost);

...

}

  

static void scsi_sysfs_add_devices(struct Scsi_Host *shost)

{

...

if (!scsi_host_scan_allowed(shost) ||

scsi_sysfs_add_sdev(sdev) != 0)

__scsi_remove_device(sdev);

}

}

 

打开kerneldriverscsiscsi_sysfs.c,

int scsi_sysfs_add_sdev(struct scsi_device *sdev)

{

...

error = device_add(&sdev->sdev_dev);

...

注:这里传的是&sdev->sdev_dev,而不是&sdev->sdev_gendev

又到了device_add,这次可不是走really_probe那么简单了,直接show出关键代码,

打开kernelasecore.c,

int device_add(struct device *dev)

{

...

if (class_intf->add_dev)

class_intf->add_dev(dev, class_intf);

...

}  

add_dev会调用哪个class_interface?

打开kerneldriverscsisg.c

static int __init

init_sg(void)

{

...

rc = scsi_register_interface(&sg_interface);

...

}

  

static struct class_interface sg_interface = {

.add_dev = sg_add,

.remove_dev = sg_remove,

};

可知调用的add_dev就是sg_add,所以节点sg就是以下代码创建的。

static int

sg_add(struct device *cl_dev, struct class_interface *cl_intf)

{

...

sdp = sg_alloc(disk, scsidp);

...

}

  

static Sg_device *sg_alloc(struct gendisk *disk, struct scsi_device *scsidp)

{

...

sprintf(disk->disk_name, "sg%d", k);

...

}

  

源码太多,花了我大把时间才捋清。

大体就是,注册一堆东东,总线(usb)啊,驱动设备(usb)啊,驱动(hub,usb-storage)啊,class(sg_interface)啊等等,然后跑一个线程,检测到需要的东东后,比对注册到特定链表的数据,然后就调用各种probe和注册的接口如add_dev等。

 

以上是 linux中OTG识别到一个U盘后产生一个sg节点的全过程 的全部内容, 来源链接: utcz.com/z/511175.html

回到顶部