ConcurrentHashMap(Java8)源码分析

java

1. 常量、成员变量

private static final int MAXIMUM_CAPACITY = 1 << 30; // 和HashMap一样

private static final int DEFAULT_CAPACITY = 16; // 和HashMap一样

static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; // 和HashMap一样

static final int TREEIFY_THRESHOLD = 8; // 和HashMap一样

static final int UNTREEIFY_THRESHOLD = 6; // 和HashMap一样

static final int MIN_TREEIFY_CAPACITY = 64; // 和HashMap一样

private static final float LOAD_FACTOR = 0.75f; // 不怎么用 -> 见transfer方法:sizeCtl = (n << 1) - (n >>> 1)

private static final int DEFAULT_CONCURRENCY_LEVEL = 16; // 旧版的Segment???

private static final int MIN_TRANSFER_STRIDE = 16; // 扩容时最小的迁移分组大小(见transfer)

private static int RESIZE_STAMP_BITS = 16; // 见resizeStamp方法

private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1; // 2^16 - 1

private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS; // 见addCount方法

static final int MOVED = -1; // 转发节点(ForwardingNode)hash

static final int TREEBIN = -2; // 红黑树节点(TreeBin)hash

static final int RESERVED = -3; /// 保留

static final int HASH_BITS = 0x7fffffff; // hash掩码(见spread方法)

static final int NCPU = Runtime.getRuntime().availableProcessors(); // 处理器数量(见transfer方法和fullAddCoun方法)

private static final ObjectStreamField[] serialPersistentFields = {

new ObjectStreamField("segments", Segment[].class),

new ObjectStreamField("segmentMask", Integer.TYPE),

new ObjectStreamField("segmentShift", Integer.TYPE)

};

transient volatile Node<K,V>[] table; // 哈希数组(链地址法)

private transient volatile Node<K,V>[] nextTable; // 当前扩容时的table(临时)

private transient volatile long baseCount; // 节点基础计数(见addCount方法)

private transient volatile int sizeCtl; // 扩容阈值,类似于HashMap中的threshold

private transient volatile int transferIndex; // 线程迁移bin的起始位置,CAS(transferIndex)成功者可迁移transferIndex前置stride个bin(见transfer)

private transient volatile int cellsBusy; // counterCells锁(见fullAddCount方法)

private transient volatile CounterCell[] counterCells; // baseCount增量(见fullAddCount方法)

private static final sun.misc.Unsafe U;

private static final long SIZECTL;

private static final long TRANSFERINDEX;

private static final long BASECOUNT;

private static final long CELLSBUSY;

private static final long CELLVALUE;

private static final long ABASE;

private static final int ASHIFT;

static {

try {

U = sun.misc.Unsafe.getUnsafe();

Class<?> k = ConcurrentHashMap.class;

SIZECTL = U.objectFieldOffset(k.getDeclaredField("sizeCtl"));

TRANSFERINDEX = U.objectFieldOffset(k.getDeclaredField("transferIndex"));

BASECOUNT = U.objectFieldOffset(k.getDeclaredField("baseCount"));

CELLSBUSY = U.objectFieldOffset(k.getDeclaredField("cellsBusy"));

Class<?> ck = CounterCell.class;

CELLVALUE = U.objectFieldOffset(ck.getDeclaredField("value"));

Class<?> ak = Node[].class;

ABASE = U.arrayBaseOffset(ak); // 数组中存放数据的起始地址(见tabAt方法)

int scale = U.arrayIndexScale(ak); // 数组元素的大小(单位:字节)

if ((scale & (scale - 1)) != 0)

throw new Error("data type scale not a power of two");

ASHIFT = 31 - Integer.numberOfLeadingZeros(scale); // 幂(2^ASHIFT == 1 << ASHIFT == scale),位运算用(见tabAt方法)

} catch (Exception e) {

throw new Error(e);

}

}

2. 获取元素

1' 若key所映射的bin为空,则返回空

2‘ 若当前bin首个节点为待查找节点,则返回首个节点值

3' 若当前bin首个节点哈希值 < 0,则当前bin为红黑树,或当前bin已迁移到新table中

  1’‘ 若当前bin为空黑树(TreeBin),则在红黑树上存在写者或等待者时遍历双向链表,否则在红黑树中查找

  2'' 若当前bin已迁移到新table中,则根据前进节点(ForwardingNode)前往新table中查找

4' 当前bin首个节点哈希值 >= 0,即当前bin为单向链表,则遍历链表

// 数组内的元素非volatile

static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) { // 取table[i]

return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);

}

public V get(Object key) {

Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;

int h = spread(key.hashCode());

if ((tab = table) != null && (n = tab.length) > 0 && (e = tabAt(tab, (n - 1) & h)) != null) { // 当前bin不为空,e头结点

if ((eh = e.hash) == h) { // Node:hash >= 0

if ((ek = e.key) == key || (ek != null && key.equals(ek))) // 头结点为待查找节点

return e.val;

}

else if (eh < 0) // ForwardingNode:MOVED(-1) || TreeBin:TREEBIN(-2)

return (p = e.find(h, key)) != null ? p.val : null; // ForwardingNode.find || TreeNode.find

while ((e = e.next) != null) { // 遍历Node链表

if (e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek))))

return e.val;

}

}

return null;

}

static class Node<K,V> implements Map.Entry<K,V> {

final int hash;

final K key;

volatile V val; // volatile

volatile Node<K,V> next; // volatile

Node(int hash, K key, V val, Node<K,V> next);

... ...

}

static final class ForwardingNode<K,V> extends Node<K,V> {

final Node<K,V>[] nextTable;

ForwardingNode(Node<K,V>[] tab); // hash = TREEBIN,设置nextTable

Node<K,V> find(int h, Object k) {

outer: for (Node<K,V>[] tab = nextTable;;) {

Node<K,V> e; int n;

if (k == null || tab == null || (n = tab.length) == 0 || (e = tabAt(tab, (n - 1) & h)) == null) // 当前bin为空

return null;

for (;;) {

int eh; K ek;

if ((eh = e.hash) == h && ((ek = e.key) == k || (ek != null && k.equals(ek)))) // e为待查找节点

return e;

if (eh < 0) { // ForwardingNode:MOVED(-1) || TreeBin:TREEBIN(-2)

if (e instanceof ForwardingNode) { // 继续重定向

tab = ((ForwardingNode<K,V>)e).nextTable;

continue outer;

}

else

return e.find(h, k); // TreeBin.find(红黑树查找)

}

if ((e = e.next) == null) // 遍历Node链表

return null;

}

}

}

}

// 建议自己了解下红黑树和读写锁

static final class TreeBin<K,V> extends Node<K,V> {

TreeNode<K,V> root; // 红黑树根节点

volatile TreeNode<K,V> first; // 双向链表头节点(volatile)

volatile Thread waiter; // 等待者线程

volatile int lockState; // 锁状态(volatile)

static final int WRITER = 1; // 写锁位

static final int WAITER = 2; // 等待位

static final int READER = 4; // 读锁位

TreeBin(TreeNode<K,V> b); // hash = TREEBIN,在TreeNode双向链表上建立红黑树

final Node<K,V> find(int h, Object k) {

if (k != null) {

for (Node<K,V> e = first; e != null; ) {

int s; K ek;

if (((s = lockState) & (WAITER|WRITER)) != 0) { // 存在等待者 || 写者

if (e.hash == h && ((ek = e.key) == k || (ek != null && k.equals(ek)))) // 遍历TreeNode双向链表

return e;

e = e.next;

}

else if (U.compareAndSwapInt(this, LOCKSTATE, s, s + READER)) { // 加读锁(读者++)

TreeNode<K,V> r, p;

try {

p = ((r = root) == null ? null : r.findTreeNode(h, k, null)); // 红黑树查找

} finally {

Thread w;

if (U.getAndAddInt(this, LOCKSTATE, -READER) == (READER|WAITER) && // 释放读锁(读者--):最后一个读者 && 存在等待者

  (w = waiter) != null) // 等待者线程不为空

LockSupport.unpark(w); // 唤醒等待者

}

return p;

}

}

}

return null;

}

final TreeNode<K,V> putTreeVal(int h, K k, V v) {

... ...

else {

lockRoot(); // 加写锁

try {

root = balanceInsertion(root, x);

} finally {

unlockRoot(); // 释放写锁

}

}

... ...

}

final boolean removeTreeNode(TreeNode<K,V> p) {

... ...

lockRoot(); // 加写锁

try {

... ...

root = (p.red) ? r : balanceDeletion(r, replacement);

... ...

} finally {

unlockRoot(); // 释放写锁

}

... ...

}

... ...

}

3. 添加元素

1' 若table尚未分配空间,则初始化table

2' 若key所映射的bin为空,则设置首个节点

3' 若table正在进行扩容(首个节点为前进节点),则参与扩容,待扩容完成后再添加新元素

4' 在当前bin上加锁,并在当前bin中插入节点(红黑树 / 单向链表)

5' 节点计数++(可能进行扩容)

// 数组内的元素非volatile

static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) { // 置table[i]

U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);

}

static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i, Node<K,V> c, Node<K,V> v) { // CAS设置table[i]

return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);

}

public V put(K key, V value) {

return putVal(key, value, false);

}

final V putVal(K key, V value, boolean onlyIfAbsent) {

if (key == null || value == null) throw new NullPointerException();

int hash = spread(key.hashCode());

int binCount = 0; // 添加元素前链表内的元素计数 || 红黑树固定为2

for (Node<K,V>[] tab = table;;) {

// CAS失败 || binCount为0 回到此处

Node<K,V> f; int n, i, fh;

if (tab == null || (n = tab.length) == 0) // table尚未分配空间

tab = initTable(); // 为table分配空间

else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { // 当前bin为空

if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null))) // CAS设置bin的首个节点

// CAS成功

break;

// CAS失败

}

else if ((fh = f.hash) == MOVED) // f为ForwardingNode类型(f.hash = -1):当前正在扩容,当前bin已迁移至新table中

tab = helpTransfer(tab, f); // 帮助迁移元素

else { // 当前bin不为空

V oldVal = null;

synchronized (f) { // lock当前bin

if (tabAt(tab, i) == f) {

if (fh >= 0) { // 链表

binCount = 1;

for (Node<K,V> e = f;; ++binCount) {

K ek;

if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) { // 已存在节点

oldVal = e.val;

if (!onlyIfAbsent) // 是否覆盖

e.val = value;

break;

}

Node<K,V> pred = e;

if ((e = e.next) == null) {

pred.next = new Node<K,V>(hash, key, value, null); // 链表尾部添加节点

break;

}

}

}

else if (f instanceof TreeBin) { // 红黑树,f.hash == TREEBIN(-2)

Node<K,V> p;

binCount = 2;

if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) { // 红黑树添加节点

// 已存在节点

oldVal = p.val;

if (!onlyIfAbsent) // 是否覆盖

p.val = value;

}

}

}

}

if (binCount != 0) {

if (binCount >= TREEIFY_THRESHOLD)

treeifyBin(tab, i); // 链表转红黑树

if (oldVal != null) // 未添加新的节点

return oldVal; // return 旧值

break;

}

// binCount为0

}

}

addCount(1L, binCount); // 节点计数++,可能进行扩容

return null;

}

private final Node<K,V>[] initTable() {

Node<K,V>[] tab; int sc;

while ((tab = table) == null || tab.length == 0) { // table尚未分配空间

if ((sc = sizeCtl) < 0) /*记录sizeCtl*/

Thread.yield();

else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { /*CAS设置sizeCtl = -1*/

// CAS(sizeCtl)成功

try {

if ((tab = table) == null || tab.length == 0) { // table尚未分配空间

int n = (sc > 0) ? sc : DEFAULT_CAPACITY; // 初始容量保存在sizeCtl中 || 16

Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];

table = tab = nt;

sc = n - (n >>> 2); // 计算阈值(容量 * 0.75

}

} finally {

sizeCtl = sc; // 保存阈值到sizeCtl

}

break;

}

}

return tab;

}

4. 节点计数

增加节点计数(addCount)包含两个步骤:

1' 增加节点计数:基础计数 + 多个增量

2' 扩容:分组迁移节点

public int size() { // 多个线程同步竞争ConcurrentHashMap比较激烈时,size算不准的

long n = sumCount();

return ((n < 0L) ? 0 : (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int)n);

}

@sun.misc.Contended static final class CounterCell {

volatile long value;

CounterCell(long x) { value = x; }

}

final long sumCount() { // 计算节点总数(baseCount + 各CounterCell.value)

CounterCell[] as = counterCells; CounterCell a;

long sum = baseCount;

if (as != null) {

for (int i = 0; i < as.length; ++i) {

if ((a = as[i]) != null)

sum += a.value;

}

}

return sum;

}

static final int resizeStamp(int n) {

return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));

}

private final void addCount(long x, int check) {

CounterCell[] as; long b, s;

// 若多个线程同步竞争ConcurrentHashMap不激烈,则counterCells可能一直为空
// 若多个线程同步修改ConcurrentHashMap,则一旦出现某个线程CAS(baseCount)失败,将设置counterCells存放baseCount增量

if ((as = counterCells) != null || // counterCells不为空

!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) { // CAS设置baseCount += x(此时baseCount即为节点总数)

// counterCells为空 || CAS(baseCount)失败

CounterCell a; long v; int m;

boolean uncontended = true;

if (as == null || (m = as.length - 1) < 0 || // counterCells为空

(a = as[ThreadLocalRandom.getProbe() & m]) == null || // counterCells当前位置为空

!(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) { // CAS设置CounterCell.value += x

// counterCells为空 || 当前counterCell为空 || CAS(CounterCell.value)失败

fullAddCount(x, uncontended);

return; // 不检查扩容

}

if (check <= 1) // put:check(binCount) <= 1 || remove、clear:check < 0

return; // 不检查扩容

s = sumCount(); // 计算节点总数

}

if (check >= 0) { // put:check(binCount) >= 0

Node<K,V>[] tab, nt; int n, sc;

while (s >= (long)(sc = sizeCtl) // s >= 扩容阈值 /*记录sizeCtl*/

&& (tab = table) != null && (n = tab.length) < MAXIMUM_CAPACITY) {

int rs = resizeStamp(n);

if (sc < 0) { // 正在扩容

if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS ||

(nt = nextTable) == null || // 扩容尚未准备完成

transferIndex <= 0) // 扩容尚未准备完成 || 扩容完毕

break;

if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) // 参与扩容线程++ /*CAS设置sizeCtl += 1*/

// CAS(sizeCtl)成功

transfer(tab, nt); // helpTransfer to end

}

// 准备扩容(单线程)

else if (U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)) /*CAS设置sizeCtl = 0x100#####00000000 + 2*/

// CAS(sizeCtl)成功

transfer(tab, null); // 扩容

s = sumCount();

}

}

}

// 本来真的不想看的

private final void fullAddCount(long x, boolean wasUncontended) {

int h;

if ((h = ThreadLocalRandom.getProbe()) == 0) {

ThreadLocalRandom.localInit();

h = ThreadLocalRandom.getProbe();

wasUncontended = true;

}

boolean collide = false;

for (;;) {

CounterCell[] as; CounterCell a; int n; long v;

if ((as = counterCells) != null && (n = as.length) > 0) { // counterCells不为空

if ((a = as[(n - 1) & h]) == null) { // 当前counterCell为空

if (cellsBusy == 0) { // counterCells未加锁 /*确认cellsBusy == 0*/

CounterCell r = new CounterCell(x);

if (cellsBusy == 0 && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { /*CAS设置cellsBusy = 1*///counterCells加锁

// CAS(cellsBusy)成功

boolean created = false;

try {

CounterCell[] rs; int m, j;

if ((rs = counterCells) != null && (m = rs.length) > 0 && rs[j = (m - 1) & h] == null) {

rs[j] = r; // 添加CounterCell

created = true;

}

} finally {

cellsBusy = 0; // counterCells释放锁

}

if (created) // 添加CounterCell成功

break;

continue;

}

}

// 未能添加CounterCell...................................................................................................1

collide = false; // 下次CAS(CounterCell.value)失败不进行扩容

}

else if (!wasUncontended) // 上次CAS(CounterCell.value)失败..................................................................2

wasUncontended = true;

else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x)) // CAS设置CounterCell.value += x............................3

break;

else if (counterCells != as || n >= NCPU) // 已建立新的counterCells || counterCells.length > cup数...........................4

collide = false; // 下次CAS(CounterCell.value)失败不进行扩容

else if (!collide)

collide = true; // 下次CAS(CounterCell.value)失败进行扩容

else if (cellsBusy == 0 && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { // CAS设置cellsBusy = 1(counterCells加锁)

// CAS(cellsBusy)成功

try { // counterCells扩容

if (counterCells == as) {

CounterCell[] rs = new CounterCell[n << 1];

for (int i = 0; i < n; ++i) // 转移CounterCell

rs[i] = as[i];

counterCells = rs;

}

} finally {

cellsBusy = 0; // counterCells释放锁

}

collide = false; // 下次CAS(CounterCell.value)失败不进行扩容

continue; // 再次尝试

}

// 未能添加CounterCell:counterCells已加锁 || CAS(cellsBusy)失败.............................................................1

// 上次CAS(CounterCell.value)失败............................................................................................2

// 本次CAS(CounterCell.value)失败............................................................................................3

// 不进行扩容:已建立新的counterCells || counterCells.length > cup数.........................................................4

// 未能进行counterCells扩容:counterCells已加锁 || CAS(cellsBusy)失败........................................................5

h = ThreadLocalRandom.advanceProbe(h); // 重新计算hash

}

// 当前counterCell为空:CAS设置cellsBusy = 1(counterCells加锁)

else if (cellsBusy == 0 && counterCells == as && U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {

// CAS(cellsBusy)成功

boolean init = false;

try { // counterCells分配初始空间2

if (counterCells == as) {

CounterCell[] rs = new CounterCell[2];

rs[h & 1] = new CounterCell(x);

counterCells = rs;

init = true;

}

} finally {

cellsBusy = 0; // counterCells释放锁

}

if (init) // 成功分配空间

break;

}

// 当前counterCell为空,counterCells加锁失败:cellsBusy = 1 || CAS(cellsBusy)失败

else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x)) // CAS设置baseCount += x

break;

}

}

5. 扩容

1’ 分组迁移:允许多个线程参与迁移过程

2' 逆序迁移:transferIndex = n -> 0

3' ForwardingNode:对迁移完成的bin,其首个节点设为前进节点

final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {

Node<K,V>[] nextTab; int sc;

if (tab != null && (f instanceof ForwardingNode) && // 当前正在扩容

(nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) { // 扩容已准备完毕

int rs = resizeStamp(tab.length);

while (nextTab == nextTable && table == tab && (sc = sizeCtl) < 0) { // 当前正在扩容 /*记录sizeCtl*/

if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||

sc == rs + MAX_RESIZERS || transferIndex <= 0)

break;

if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) { // 参与扩容线程++ /*CAS设置sizeCtl += 1*/

// CAS(sizeCtl)成功

transfer(tab, nextTab);

break;

}

}

return nextTab;

}

return table;

}

private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {

int n = tab.length, stride;

if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE) // 迁移分组,最小分组为16,最大分组为table容量

stride = MIN_TRANSFER_STRIDE;

if (nextTab == null) { // 准备扩容(单线程)

try {

Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1]; // 新的table

nextTab = nt;

} catch (Throwable ex) {

sizeCtl = Integer.MAX_VALUE;

return;

}

nextTable = nextTab;

transferIndex = n; // 当前迁移位置(逆序),transferIndex为0时整个table迁移完毕

}

int nextn = nextTab.length; // n << 1

ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab); // 前进节点 -> 新的table

boolean advance = true;

boolean finishing = false; // 最后一个线程退出扩容,可准备结束

for (int i = 0, bound = 0;;) { // 当前分组的边界[bound, i]

Node<K,V> f; int fh;

while (advance) {

// CAS(transferIndex)失败将回到此处

int nextIndex, nextBound;

if (--i >= bound || finishing) // 当前分组未完全迁移 || 整个table迁移完毕,准备结束

advance = false;

else if ((nextIndex = transferIndex) <= 0) { // 不存在下一个分组 /*记录transferIndex*/

i = -1; // i越界

advance = false;

}

// 计算下个分组的边界:i(nextIndex - 1)和bound(nextBound)

else if (U.compareAndSwapInt(this, TRANSFERINDEX, nextIndex, /*CAS设置transferIndex = nextIndex - stride || 0*/

nextBound = (nextIndex > stride ? nextIndex - stride : 0))) {

// CAS(transferIndex)成功

bound = nextBound; // 高位边界

i = nextIndex - 1; // 低位边界

advance = false;

}

}

// 迁移table[bound ~ i]内的bin(逆序)

if (i < 0 || i >= n || i + n >= nextn) { // i越界检查:所有分组迁移完毕

int sc;

if (finishing) { // 整个table迁移完毕,扩容结束

nextTable = null; // 临时table置空

table = nextTab; // 更换新的table

sizeCtl = (n << 1) - (n >>> 1); // 阈值:0.75 * 容量

return;

}

if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) { // CAS设置sizeCtl -= 1:参与扩容线程--

// CAS(sizeCtl)成功

if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT) // 是否为最后一个退出扩容的线程

return; //

//

finishing = advance = true; // 准备结束

i = n; // i越界

}

}

else if ((f = tabAt(tab, i)) == null) // 当前bin为空

advance = casTabAt(tab, i, null, fwd); // 置当前节点为重定向节点:可能失败,其它线程在tab[i]处同步添加节点

else if ((fh = f.hash) == MOVED) // 确认当前节点为重定向节点(hash == MOVED):CAS成功 || 迁移当前BIN成功

advance = true; // i++

else { // 当前bin非空:分割、迁移bin

synchronized (f) { // lock当前bin

if (tabAt(tab, i) == f) {

Node<K,V> ln, hn; // 分割后的低位链表(ln)、高位链表(hn)

if (fh >= 0) { // 分割、迁移链表

int runBit = fh & n;

Node<K,V> lastRun = f;

for (Node<K,V> p = f.next; p != null; p = p.next) {

int b = p.hash & n;

if (b != runBit) {

runBit = b;

lastRun = p;

}

}

if (runBit == 0) {

ln = lastRun;

hn = null;

}

else {

hn = lastRun;

ln = null;

}

for (Node<K,V> p = f; p != lastRun; p = p.next) {

int ph = p.hash; K pk = p.key; V pv = p.val;

if ((ph & n) == 0)

ln = new Node<K,V>(ph, pk, pv, ln);

else

hn = new Node<K,V>(ph, pk, pv, hn);

}

setTabAt(nextTab, i, ln);

setTabAt(nextTab, i + n, hn);

setTabAt(tab, i, fwd); // 当前bin迁移完毕,置tab[i]为前进节点

advance = true;

}

else if (f instanceof TreeBin) { // 分割、迁移红黑树

TreeBin<K,V> t = (TreeBin<K,V>)f;

TreeNode<K,V> lo = null, loTail = null; // 低位双向链表

TreeNode<K,V> hi = null, hiTail = null; // 高位双向链表

int lc = 0, hc = 0;

for (Node<K,V> e = t.first; e != null; e = e.next) {

int h = e.hash;

TreeNode<K,V> p = new TreeNode<K,V>(h, e.key, e.val, null, null);

if ((h & n) == 0) {

if ((p.prev = loTail) == null)

lo = p;

else

loTail.next = p;

loTail = p;

++lc;

}

else {

if ((p.prev = hiTail) == null)

hi = p;

else

hiTail.next = p;

hiTail = p;

++hc;

}

}

ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) : // 双向链表转链表

(hc != 0) ? new TreeBin<K,V>(lo) : t; // 在双向链表上建立红黑树(treeify) || noop

hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) : // 双向链表转链表

(lc != 0) ? new TreeBin<K,V>(hi) : t; // 在双向链表上建立红黑树(treeify) || noop

setTabAt(nextTab, i, ln);

setTabAt(nextTab, i + n, hn);

setTabAt(tab, i, fwd); // 当前bin迁移完毕,置tab[i]为前进节点

advance = true;

}

}

}

}

}

}

6. 删除元素

1' 若key所映射的bin为空,则返回

2' 若table正在进行扩容(首个节点为前进节点),则参与扩容,待扩容完成后再删除元素

3' 在当前bin上加锁,并从当前bin中删除节点(红黑树 / 单向链表)

4' 节点计数--

public V remove(Object key) {

return replaceNode(key, null, null);

}

final V replaceNode(Object key, V value, Object cv) { // value != null表示替换元素

int hash = spread(key.hashCode());

for (Node<K,V>[] tab = table;;) {

Node<K,V> f; int n, i, fh;

if (tab == null || (n = tab.length) == 0 || (f = tabAt(tab, i = (n - 1) & hash)) == null) // 当前bin为空

break;

else if ((fh = f.hash) == MOVED) // f为ForwardingNode类型(f.hash = -1):当前正在扩容,当前bin已迁移至新table中

tab = helpTransfer(tab, f); // 帮助迁移元素

else { // 当前bin不为空

V oldVal = null;

boolean validated = false;

synchronized (f) { // lock当前bin

if (tabAt(tab, i) == f) {

if (fh >= 0) { // 链表

validated = true;

for (Node<K,V> e = f, pred = null;;) {

K ek;

if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) { // 找到待删除(替换)节点

V ev = e.val;

if (cv == null || cv == ev || (ev != null && cv.equals(ev))) {

oldVal = ev;

if (value != null) // 替换元素

e.val = value;

else if (pred != null) // 删除链表的非首个节点

pred.next = e.next;

else // 删除连表的首个节点

setTabAt(tab, i, e.next);

}

break;

}

pred = e;

if ((e = e.next) == null)

break;

}

}

else if (f instanceof TreeBin) { // 红黑树,f.hash == TREEBIN(-2)

validated = true;

TreeBin<K,V> t = (TreeBin<K,V>)f;

TreeNode<K,V> r, p;

if ((r = t.root) != null &&

(p = r.findTreeNode(hash, key, null)) != null) { // 在红黑树中找到待删除(替换)节点p

V pv = p.val;

if (cv == null || cv == pv || (pv != null && cv.equals(pv))) {

oldVal = pv;

if (value != null)

p.val = value;

else if (t.removeTreeNode(p)) // 在红黑树中删除p && 红黑树待转链表

setTabAt(tab, i, untreeify(t.first));

}

}

}

}

}

if (validated) {

if (oldVal != null) { // 存在待删除(替换)节点

if (value == null) // 删除节点而非替换节点值

addCount(-1L, -1); // 节点计数--

return oldVal;

}

break;

}

// 未删除节点

}

}

return null;

}

以上是 ConcurrentHashMap(Java8)源码分析 的全部内容, 来源链接: utcz.com/z/392501.html

回到顶部