使用java调用python训练出的pmml模型

java

记录下自己的过程,以后可以随时用,如果能帮到大家就更好了。

从安装软件说起,嫌麻烦的就别看了。

一、下载工具(俗话说得好,预先善其事必先利其器!哈哈)

我刚开始安装的是eclipse,但有诸多麻烦不能解决,就用了IDEA,和Pycharm一个公司发行的。

首先进入官网: http://www.jetbrains.com/products.html#lang=java

选择IDEA下载:

由于社区版的功能太少,我下载的是企业版的,后边会告诉破解方法。

IDEA的安装教程网上都有,正常安装就好。

企业版的激活码大家可以关注一个公众号,我也是在网上找到的。

http://idea.medeming.com/

关注公众号后粘贴就行了。

二、Java环境安装

参考教程:https://blog.csdn.net/weixin_38381149/article/details/89668578

写博客时想找当时看的博客,但发现了这个很全的,jdk,maven,tomcat都有。

想当初我为了装一个maven花了好久。。。

三、新建Maven项目

  File ==》New==》Project==》Maven

四、接下来在IDEA中配置Maven,这是当时参考的博客:https://www.cnblogs.com/jiangzhaowei/p/9534393.html

五、添加依赖

  由于我只是为了调用模型,没有太多依赖,只添加了这么几个

    <dependencies>

<dependency>

<groupId>org.jpmml</groupId>

<artifactId>pmml-evaluator</artifactId>

<version>1.4.1</version>

</dependency>

<dependency>

<groupId>org.jpmml</groupId>

<artifactId>pmml-evaluator-extension</artifactId>

<version>1.4.1</version>

</dependency>

<dependency>

<groupId>javax.xml.bind</groupId>

<artifactId>jaxb-api</artifactId>

<version>2.3.0</version>

</dependency>

<dependency>

<groupId>com.sun.xml.bind</groupId>

<artifactId>jaxb-core</artifactId>

<version>2.3.0</version>

</dependency>

<dependency>

<groupId>com.sun.xml.bind</groupId>

<artifactId>jaxb-impl</artifactId>

<version>2.3.0</version>

</dependency>

</dependencies>

六、java调用Python训练出的pmml模型的代码

import org.dmg.pmml.FieldName;

import org.dmg.pmml.PMML;

import org.jpmml.evaluator.*;

import org.jpmml.model.PMMLUtil;

import org.xml.sax.SAXException;

import javax.xml.bind.JAXBException;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.io.InputStream;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

public class ClassificationModel {

private Evaluator modelEvaluator;

/**

* 通过传入 PMML 文件路径来生成机器学习模型

*

* @param pmmlFileName pmml 文件路径

*/

public ClassificationModel(String pmmlFileName) {

PMML pmml = null;

try {

if (pmmlFileName != null) {

InputStream is = new FileInputStream(pmmlFileName);

pmml = PMMLUtil.unmarshal(is);

try {

is.close();

} catch (IOException e) {

System.out.println("InputStream close error!");

}

ModelEvaluatorFactory modelEvaluatorFactory = ModelEvaluatorFactory.newInstance();

this.modelEvaluator = (Evaluator) modelEvaluatorFactory.newModelEvaluator(pmml);

modelEvaluator.verify();

System.out.println("加载模型成功!");

}

} catch (SAXException e) {

e.printStackTrace();

} catch (JAXBException e) {

e.printStackTrace();

} catch (FileNotFoundException e) {

e.printStackTrace();

}

}

// 获取模型需要的特征名称

public List<String> getFeatureNames() {

List<String> featureNames = new ArrayList<String>();

List<InputField> inputFields = modelEvaluator.getInputFields();

for (InputField inputField : inputFields) {

featureNames.add(inputField.getName().toString());

}

return featureNames;

}

// 获取目标字段名称

public String getTargetName() {

return modelEvaluator.getTargetFields().get(0).getName().toString();

}

// 使用模型生成概率分布

private ProbabilityDistribution getProbabilityDistribution(Map<FieldName, ?> arguments) {

Map<FieldName, ?> evaluateResult = modelEvaluator.evaluate(arguments);

FieldName fieldName = new FieldName(getTargetName());

return (ProbabilityDistribution) evaluateResult.get(fieldName);

}

// 预测不同分类的概率

public ValueMap<String, Number> predictProba(Map<FieldName, Number> arguments) {

ProbabilityDistribution probabilityDistribution = getProbabilityDistribution(arguments);

return probabilityDistribution.getValues();

}

// 预测结果分类

public Object predict(Map<FieldName, ?> arguments) {

ProbabilityDistribution probabilityDistribution = getProbabilityDistribution(arguments);

return probabilityDistribution.getPrediction();

}

public static void main(String[] args) {

ClassificationModel clf = new ClassificationModel("D:/JupyterSpace/RandomForestClassifier_Iris.pmml"); //这里模型地址

List<String> featureNames = clf.getFeatureNames();

System.out.println("feature: " + featureNames);

// 构建待预测数据

Map<FieldName, Number> waitPreSample = new HashMap<>();
     #这里的key一定要对应python中的列名

waitPreSample.put(new FieldName("sepal length (cm)"), 10);

waitPreSample.put(new FieldName("sepal width (cm)"), 1);

waitPreSample.put(new FieldName("petal length (cm)"), 3);

waitPreSample.put(new FieldName("petal width (cm)"), 2);

System.out.println("waitPreSample predict result: " + clf.predict(waitPreSample).toString());

System.out.println("waitPreSample predictProba result: " + clf.predictProba(waitPreSample).toString());

}

}

注意事项:

1、类名和文件名要一致

2、打开File  ==》Project Structure

看你的JDK版本和这里是否一致

运行程序,查看是否报错。

这是我报的一个错:

  解决方法是下载:activation.jar包。

  下载地址:

    链接:https://pan.baidu.com/s/14D8cQWIJp2d7h2iljAPZ2A
    提取码:6f37

应该没什么问题了。有问题请留言,一定回复。(有问题一定要告诉我,以后还要用呢。。。)

以上是 使用java调用python训练出的pmml模型 的全部内容, 来源链接: utcz.com/z/392343.html

回到顶部