《java学习三》并发编程 -------线程池原理剖析

java

 

阻塞队列与非阻塞队

阻塞队列与普通队列的区别在于,当队列是空的时,从队列中获取元素的操作将会被阻塞,或者当队列是满时,往队列里添加元素的操作会被阻塞。试图从空的阻塞队列中获取元素的线程将会被阻塞,直到其他的线程往空的队列插入新的元素。同样,试图往已满的阻塞队列中添加新元素的线程同样也会被阻塞,直到其他的线程使队列重新变得空闲起来,如从队列中移除一个或者多个元素,或者完全清空队列.

1.ArrayDeque, (数组双端队列) 

2.PriorityQueue, (优先级队列) 

3.ConcurrentLinkedQueue, (基于链表的并发队列) 

4.DelayQueue, (延期阻塞队列)(阻塞队列实现了BlockingQueue接口) 

5.ArrayBlockingQueue, (基于数组的并发阻塞队列) 

6.LinkedBlockingQueue, (基于链表的FIFO阻塞队列) 

7.LinkedBlockingDeque, (基于链表的FIFO双端阻塞队列) 

8.PriorityBlockingQueue, (带优先级的无界阻塞队列) 

9.SynchronousQueue (并发同步阻塞队列)

 

ConcurrentLinkedDeque

ConcurrentLinkedQueue : 是一个适用于高并发场景下的队列,通过无锁的方式,实现

了高并发状态下的高性能,通常ConcurrentLinkedQueue性能好于BlockingQueue.它

是一个基于链接节点的无界线程安全队列。该队列的元素遵循先进先出的原则。头是最先

加入的,尾是最近加入的,该队列不允许null元素。

ConcurrentLinkedQueue重要方法:

add 和offer() 都是加入元素的方法(在ConcurrentLinkedQueue中这俩个方法没有任何区别)

poll() 和peek() 都是取头元素节点,区别在于前者会删除元素,后者不会。

     ConcurrentLinkedDeque q = new ConcurrentLinkedDeque();

     q.offer("基金");

     q.offer("码云");

     q.offer("课堂");

     q.offer("张杰");

     q.offer("地方");

     //从头获取元素,删除该元素

     System.out.println(q.poll());

     //从头获取元素,不刪除该元素

     System.out.println(q.peek());

     //获取总长度

     System.out.println(q.size());

BlockingQueue

阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。这两个附加的操作是:

在队列为空时,获取元素的线程会等待队列变为非空。

当队列满时,存储元素的线程会等待队列可用。

阻塞队列常用于生产者和消费者的场景,生产者是往队列里添加元素的线程,消费者是从队列里拿元素的线程。阻塞队列就是生产者存放元素的容器,而消费者也只从容器里拿元素。

BlockingQueue即阻塞队列,从阻塞这个词可以看出,在某些情况下对阻塞队列的访问可能会造成阻塞。被阻塞的情况主要有如下两种:

1. 当队列满了的时候进行入队列操作

2. 当队列空了的时候进行出队列操作

因此,当一个线程试图对一个已经满了的队列进行入队列操作时,它将会被阻塞,除非有另一个线程做了出队列操作;同样,当一个线程试图对一个空队列进行出队列操作时,它将会被阻塞,除非有另一个线程进行了入队列操作。

在Java中,BlockingQueue的接口位于java.util.concurrent 包中(在Java5版本开始提供),由上面介绍的阻塞队列的特性可知,阻塞队列是线程安全的。

在新增的Concurrent包中,BlockingQueue很好的解决了多线程中,如何高效安全“传输”数据的问题。通过这些高效并且线程安全的队列类,为我们快速搭建高质量的多线程程序带来极大的便利。本文详细介绍了BlockingQueue家庭中的所有成员,包括他们各自的功能以及常见使用场景。

认识BlockingQueue

阻塞队列,顾名思义,首先它是一个队列,而一个队列在数据结构中所起的作用大致如下图所示:

从上图我们可以很清楚看到,通过一个共享的队列,可以使得数据由队列的一端输入,从另外一端输出;

常用的队列主要有以下两种:(当然通过不同的实现方式,还可以延伸出很多不同类型的队列,DelayQueue就是其中的一种)

  先进先出(FIFO):先插入的队列的元素也最先出队列,类似于排队的功能。从某种程度上来说这种队列也体现了一种公平性。

  后进先出(LIFO):后插入队列的元素最先出队列,这种队列优先处理最近发生的事件。

     

多线程环境中,通过队列可以很容易实现数据共享,比如经典的“生产者”和“消费者”模型中,通过队列可以很便利地实现两者之间的数据共享。假设我们有若干生产者线程,另外又有若干个消费者线程。如果生产者线程需要把准备好的数据共享给消费者线程,利用队列的方式来传递数据,就可以很方便地解决他们之间的数据共享问题。但如果生产者和消费者在某个时间段内,万一发生数据处理速度不匹配的情况呢?理想情况下,如果生产者产出数据的速度大于消费者消费的速度,并且当生产出来的数据累积到一定程度的时候,那么生产者必须暂停等待一下(阻塞生产者线程),以便等待消费者线程把累积的数据处理完毕,反之亦然。然而,在concurrent包发布以前,在多线程环境下,我们每个程序员都必须去自己控制这些细节,尤其还要兼顾效率和线程安全,而这会给我们的程序带来不小的复杂度。好在此时,强大的concurrent包横空出世了,而他也给我们带来了强大的BlockingQueue。(在多线程领域:所谓阻塞,在某些情况下会挂起线程(即阻塞),一旦条件满足,被挂起的线程又会自动被唤醒)

下面两幅图演示了BlockingQueue的两个常见阻塞场景:

ArrayBlockingQueue

ArrayBlockingQueue是一个有边界的阻塞队列,它的内部实现是一个数组。有边界的意思是它的容量是有限的,我们必须在其初始化的时候指定它的容量大小,容量大小一旦指定就不可改变。

ArrayBlockingQueue是以先进先出的方式存储数据,最新插入的对象是尾部,最新移出的对象是头部。下面

是一个初始化和使用ArrayBlockingQueue的例子:

    

 

 

<String>

arrays = new ArrayBlockingQueue<String>(3);

     arrays.add("李四");

      arrays.add("张军");

     arrays.add("张军");

     // 添加阻塞队列

     arrays.offer("张三", 1,

TimeUnit.SECONDS);

LinkedBlockingQueue

LinkedBlockingQueue阻塞队列大小的配置是可选的,如果我们初始化时指定一个大小,它就是有边界的,如果不指定,它就是无边界的。说是无边界,其实是采用了默认大小为Integer.MAX_VALUE的容量 。它的内部实现是一个链表。

和ArrayBlockingQueue一样,LinkedBlockingQueue 也是以先进先出的方式存储数据,最新插入的对象是尾部,最新移出的对象是头部。下面是一个初始化和使LinkedBlockingQueue的例子:

LinkedBlockingQueuelinkedBlockingQueue = new LinkedBlockingQueue(3);

linkedBlockingQueue.add("张三");

linkedBlockingQueue.add("李四");

linkedBlockingQueue.add("李四");

System.out.println(linkedBlockingQueue.size());

PriorityBlockingQueue

PriorityBlockingQueue是一个没有边界的队列,它的排序规则和

java.util.PriorityQueue一样。需要注

意,PriorityBlockingQueue中允许插入null对象。

所有插入PriorityBlockingQueue的对象必须实现 java.lang.Comparable接口,队列优先级的排序规则就

是按照我们对这个接口的实现来定义的。

另外,我们可以从PriorityBlockingQueue获得一个迭代器Iterator,但这个迭代器并不保证按照优先级顺

序进行迭代。

下面我们举个例子来说明一下,首先我们定义一个对象类型,这个对象需要实现Comparable接口:

SynchronousQueue

SynchronousQueue队列内部仅允许容纳一个元素。当一个线程插入一个元素后会被阻塞,除非这个元素被另一个线程消费。

使用BlockingQueue模拟生产者与消费者

class

ProducerThread implements Runnable {

      private

BlockingQueue<String> blockingQueue;

      private

AtomicInteger count = new AtomicInteger();

      private volatile boolean FLAG = true;

 

      public

ProducerThread(BlockingQueue<String> blockingQueue) {

           this.blockingQueue = blockingQueue;

      }

 

      @Override

      public void run() {

           System.out.println(Thread.currentThread().getName()

+ "生产者开始启动....");

           while (FLAG) {

                 String

data = count.incrementAndGet()

+ "";

                 try {

                      boolean offer = blockingQueue.offer(data, 2,

TimeUnit.SECONDS);

                      if (offer) {

                            System.out.println(Thread.currentThread().getName()

+ ",生产队列" + data + "成功..");

                      }

else {

                            System.out.println(Thread.currentThread().getName()

+ ",生产队列" + data + "失败..");

                      }

                      Thread.sleep(1000);

                 }

catch (Exception e) {

 

                 }

           }

           System.out.println(Thread.currentThread().getName()

+ ",生产者线程停止...");

      }

 

      public void stop() {

           this.FLAG = false;

      }

 

}

 

class

ConsumerThread implements Runnable {

      private volatile boolean FLAG = true;

      private

BlockingQueue<String> blockingQueue;

 

      public

ConsumerThread(BlockingQueue<String> blockingQueue) {

           this.blockingQueue = blockingQueue;

      }

 

      @Override

      public void run() {

           System.out.println(Thread.currentThread().getName()

+ "消费者开始启动....");

           while (FLAG) {

                 try {

                      String

data = blockingQueue.poll(2,

TimeUnit.SECONDS);

                      if (data == null || data == "") {

                            FLAG = false;

                            System.out.println("消费者超过2秒时间未获取到消息.");

                            return;

                      }

                      System.out.println("消费者获取到队列信息成功,data:" + data);

 

                 }

catch (Exception e) {

                      // TODO: handle

exception

                 }

           }

      }

 

}

 

public class Test0008

{

 

      public static void

main(String[] args) {

           BlockingQueue<String>

blockingQueue = new

LinkedBlockingQueue<>(3);

           ProducerThread

producerThread = new

ProducerThread(blockingQueue);

           ConsumerThread

consumerThread = new

ConsumerThread(blockingQueue);

           Thread t1 = new Thread(producerThread);

           Thread t2 = new Thread(consumerThread);

           t1.start();

           t2.start();

           //10秒后 停止线程..

           try {

                 Thread.sleep(10*1000);

                 producerThread.stop();

           } catch

(Exception e) {

                 // TODO: handle

exception

           }

      }

 

}

什么是线程池

Java中的线程池是运用场景最多的并发框架,几乎所有需要异步或并发执行任务的程序

都可以使用线程池。在开发过程中,合理地使用线程池能够带来3个好处。

第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。

第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。

第三:提高线程的可管理性。线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,

还会降低系统的稳定性,使用线程池可以进行统一分配、调优和监控。但是,要做到合理利用

线程池,必须对其实现原理了如指掌。

线程池作用

线程池是为突然大量爆发的线程设计的,通过有限的几个固定线程为大量的操作服务,减少了创建和销毁线程所需的时间,从而提高效率。

如果一个线程的时间非常长,就没必要用线程池了(不是不能作长时间操作,而是不宜。),况且我们还不能控制线程池中线程的开始、挂起、和中止。

线程池的分类

ThreadPoolExecutor

Java是天生就支持并发的语言,支持并发意味着多线程,线程的频繁创建在高并发及大数据量是非常消耗资源的,因为java提供了线程池。在jdk1.5以前的版本中,线程池的使用是及其简陋的,但是在JDK1.5后,有了很大的改善。JDK1.5之后加入了java.util.concurrent包,java.util.concurrent包的加入给予开发人员开发并发程序以及解决并发问题很大的帮助。这篇文章主要介绍下并发包下的Executor接口,Executor接口虽然作为一个非常旧的接口(JDK1.5 2004年发布),但是很多程序员对于其中的一些原理还是不熟悉,因此写这篇文章来介绍下Executor接口,同时巩固下自己的知识。如果文章中有出现错误,欢迎大家指出。

Executor框架的最顶层实现是ThreadPoolExecutor类,Executors工厂类中提供的newScheduledThreadPool、newFixedThreadPool、newCachedThreadPool方法其实也只是ThreadPoolExecutor的构造函数参数不同而已。通过传入不同的参数,就可以构造出适用于不同应用场景下的线程池,那么它的底层原理是怎样实现的呢,这篇就来介绍下ThreadPoolExecutor线程池的运行过程。

corePoolSize: 核心池的大小。

当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中

maximumPoolSize: 线程池最大线程数,它表示在线程池中最多能创建多少个线程;

keepAliveTime: 表示线程没有任务执行时最多保持多久时间会终止。

unit: 参数keepAliveTime的时间单位,有7种取值,在TimeUnit类中有7种静态属性:

线程池四种创建方式

Java通过Executors(jdk1.5并发包)提供四种线程池,分别为:

newCachedThreadPool创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。

newFixedThreadPool 创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。

newScheduledThreadPool

创建一个定长线程池,支持定时及周期性任务执行。

newSingleThreadExecutor

创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。

newCachedThreadPool

创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。示例代码如下:

           // 无限大小线程池 jvm自动回收

           ExecutorService newCachedThreadPool = Executors.newCachedThreadPool();

           for (inti = 0; i < 10; i++) {

                 finalinttemp = i;

                 newCachedThreadPool.execute(new Runnable() {

 

                      @Override

                      publicvoid run() {

                            try {

                                  Thread.sleep(100);

                            } catch (Exception e) {

                                  // TODO: handle exception

                            }

                            System.out.println(Thread.currentThread().getName()

+ ",i:" + temp);

 

                      }

                 });

           }

总结: 线程池为无限大,当执行第二个任务时第一个任务已经完成,会复用执行第一个任务的线程,而不用每次新建线程。

newFixedThreadPool

创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。示例代码如下:

ExecutorService

newFixedThreadPool = Executors.newFixedThreadPool(5);

           for (inti = 0; i < 10; i++) {

                 finalinttemp = i;

                 newFixedThreadPool.execute(new Runnable() {

 

                      @Override

                      publicvoid run() {

                            System.out.println(Thread.currentThread().getId()

+ ",i:" + temp);

 

                      }

                 });

           }

总结:因为线程池大小为3,每个任务输出index后sleep

2秒,所以每两秒打印3个数字。

定长线程池的大小最好根据系统资源进行设置。如Runtime.getRuntime().availableProcessors()

newScheduledThreadPool

创建一个定长线程池,支持定时及周期性任务执行。延迟执行示例代码如下:

ScheduledExecutorService

newScheduledThreadPool = Executors.newScheduledThreadPool(5);

           for (inti = 0; i < 10; i++) {

                 finalinttemp = i;

                 newScheduledThreadPool.schedule(new Runnable() {

                      publicvoid run() {

                            System.out.println("i:" + temp);

                      }

                 }, 3, TimeUnit.SECONDS);

}

表示延迟3秒执行。

newSingleThreadExecutor

创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。示例代码如下:

     ExecutorService

newSingleThreadExecutor = Executors.newSingleThreadExecutor();

         for (inti = 0; i < 10; i++) {

              finalintindex = i;

              newSingleThreadExecutor.execute(new Runnable() {

 

                   @Override

                   publicvoid run() {

                       System.out.println("index:" + index);

                       try {

                            Thread.sleep(200);

                       }

catch (Exception e) {

                            // TODO: handle exception

                       }

                   }

              });

         }

注意: 结果依次输出,相当于顺序执行各个任务。

线程池原理剖析

提交一个任务到线程池中,线程池的处理流程如下:

1、判断线程池里的核心线程是否都在执行任务,如果不是(核心线程空闲或者还有核心线程没有被创建)则创建一个新的工作线程来执行任务。如果核心线程都在执行任务,则进入下个流程。

2、线程池判断工作队列是否已满,如果工作队列没有满,则将新提交的任务存储在这个工作队列里。如果工作队列满了,则进入下个流程。

3、判断线程池里的线程是否都处于工作状态,如果没有,则创建一个新的工作线程来执行任务。如果已经满了,则交给饱和策略来处理这个任务。

自定义线程线程池

如果当前线程池中的线程数目小于corePoolSize,则每来一个任务,就会创建一个线程去执行这个任务;

如果当前线程池中的线程数目>=corePoolSize,则每来一个任务,会尝试将其添加到任务缓存队列当中,若添加成功,则该任务会等待空闲线程将其取出去执行;若添加失败(一般来说是任务缓存队列已满),则会尝试创建新的线程去执行这个任务;

如果队列已经满了,则在总线程数不大于maximumPoolSize的前提下,则创建新的线程

如果当前线程池中的线程数目达到maximumPoolSize,则会采取任务拒绝策略进行处理;

如果线程池中的线程数量大于 corePoolSize时,如果某线程空闲时间超过keepAliveTime,线程将被终止,直至线程池中的线程数目不大于corePoolSize;如果允许为核心池中的线程设置存活时间,那么核心池中的线程空闲时间超过keepAliveTime,线程也会被终止。

public class Test0007

{

 

      public static void

main(String[] args) {

           ThreadPoolExecutor

executor = new

ThreadPoolExecutor(1, 2, 60L, TimeUnit.SECONDS, new ArrayBlockingQueue<>(3));

           for (int i = 1; i <= 6; i++) {

                 TaskThred

t1 = new

TaskThred("任务" + i);

                 executor.execute(t1);

           }

           executor.shutdown();

      }

}

 

class TaskThred implements Runnable

{

      private String taskName;

 

      public

TaskThred(String taskName) {

           this.taskName = taskName;

      }

 

      @Override

      public void run() {

           System.out.println(Thread.currentThread().getName()+taskName);

      }

 

}

合理配置线程池

CPU密集

CPU密集的意思是该任务需要大量的运算,而没有阻塞,CPU一直全速运行。

CPU密集任务只有在真正的多核CPU上才可能得到加速(通过多线程),而在单核CPU上,无论你开几个模拟的多线程,该任务都不可能得到加速,因为CPU总的运算能力就那些。

IO密集

IO密集型,即该任务需要大量的IO,即大量的阻塞。在单线程上运行IO密集型的任务会导致浪费大量的CPU运算能力浪费在等待。所以在IO密集型任务中使用多线程可以大大的加速程序运行,即时在单核CPU上,这种加速主要就是利用了被浪费掉的阻塞时间。

接着上一篇探讨线程池留下的尾巴,如何合理的设置线程池大小。

要想合理的配置线程池的大小,首先得分析任务的特性,可以从以下几个角度分析:

1.   任务的性质:CPU密集型任务、IO密集型任务、混合型任务。

2.   任务的优先级:高、中、低。

3.   任务的执行时间:长、中、短。

4.   任务的依赖性:是否依赖其他系统资源,如数据库连接等。

性质不同的任务可以交给不同规模的线程池执行。

对于不同性质的任务来说,CPU密集型任务应配置尽可能小的线程,如配置CPU个数+1的线程数,IO密集型任务应配置尽可能多的线程,因为IO操作不占用CPU,不要让CPU闲下来,应加大线程数量,如配置两倍CPU个数+1,而对于混合型的任务,如果可以拆分,拆分成IO密集型和CPU密集型分别处理,前提是两者运行的时间是差不多的,如果处理时间相差很大,则没必要拆分了。

若任务对其他系统资源有依赖,如某个任务依赖数据库的连接返回的结果,这时候等待的时间越长,则CPU空闲的时间越长,那么线程数量应设置得越大,才能更好的利用CPU。

当然具体合理线程池值大小,需要结合系统实际情况,在大量的尝试下比较才能得出,以上只是前人总结的规律。

最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目

比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:

最佳线程数目 = (线程等待时间与线程CPU时间之比

+ 1)* CPU数目

可以得出一个结论: 

线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。 

以上公式与之前的CPU和IO密集型任务设置线程数基本吻合。

CPU密集型时,任务可以少配置线程数,大概和机器的cpu核数相当,这样可以使得每个线程都在执行任务

IO密集型时,大部分线程都阻塞,故需要多配置线程数,2*cpu核数

操作系统之名称解释:

某些进程花费了绝大多数时间在计算上,而其他则在等待I/O上花费了大多是时间,

前者称为计算密集型(CPU密集型)computer-bound,后者称为I/O密集型,I/O-bound。

以上是 《java学习三》并发编程 -------线程池原理剖析 的全部内容, 来源链接: utcz.com/z/391668.html

回到顶部