[转]Python零碎知识(2):强大的zip

python

一、代码引导

首先看这一段代码:

 1 >>> name=('jack','beginman','sony','pcky')

2 >>> age=(2001,2003,2005,2000)

3 >>> for a,n in zip(name,age):

4 print a,n

5

6 输出:

7 jack 2001

8 beginman 2003

9 sony 2005

10 pcky 2000

再看这一段代码:

1 all={"jack":2001,"beginman":2003,"sony":2005,"pcky":2000}

2 for i in all.keys():

3 print i,all[i]

4

5 输出:

6 sony 2005

7 pcky 2000

8 jack 2001

9 beginman 2003

发现它们之间的区别么?

最显而易见的是:第一种简洁、灵活、而且能顺序输入。

二、zip()函数

它是Python的内建函数,(与序列有关的内建函数有:sorted()、reversed()、enumerate()、zip()),其中sorted()和zip()返回一个序列(列表)对象,reversed()、enumerate()返回一个迭代器(类似序列)

1 >>> type(sorted(s))

2 <type 'list'>

3 >>> type(zip(s))

4 <type 'list'>

5 >>> type(reversed(s))

6 <type 'listreverseiterator'>

7 >>> type(enumerate(s))

8 <type 'enumerate'>

那么什么是zip()函数 呢?

我们help(zip)看看:

1 >>> help(zip)

2 Help on built-in function zip in module __builtin__:

3

4 zip(...)

5 zip(seq1 [, seq2 [...]]) -> [(seq1[0], seq2[0] ...), (...)]

6

7 Return a list of tuples, where each tuple contains the i-th element

8 from each of the argument sequences. The returned list is truncated

9 in length to the length of the shortest argument sequence.

提示:不懂的一定多help

定义:zip([seql, ...])接受一系列可迭代对象作为参数,将对象中对应的元素打包成一个个tuple(元组),然后返回由这些tuples组成的list(列表)。若传入参数的长度不等,则返回list的长度和参数中长度最短的对象相同。

 1 >>> z1=[1,2,3]

2 >>> z2=[4,5,6]

3 >>> result=zip(z1,z2)

4 >>> result

5 [(1, 4), (2, 5), (3, 6)]

6 >>> z3=[4,5,6,7]

7 >>> result=zip(z1,z3)

8 >>> result

9 [(1, 4), (2, 5), (3, 6)]

10 >>>

zip()配合*号操作符,可以将已经zip过的列表对象解压

1 >>> zip(*result)

2 [(1, 2, 3), (4, 5, 6)]

更近一层的了解:
内容来源:http://www.cnblogs.com/diyunpeng/archive/2011/09/15/2177028.html   (博客园人才真多!)

* 二维矩阵变换(矩阵的行列互换)

比如我们有一个由列表描述的二维矩阵

a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

通过python列表推导的方法,我们也能轻易完成这个任务

print [ [row[col] for row in a] for col in range(len(a[0]))]

[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

另外一种让人困惑的方法就是利用zip函数:

>>> a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

>>> zip(*a)

[(1, 4, 7), (2, 5, 8), (3, 6, 9)]

>>> map(list,zip(*a))

[[1, 4, 7], [2, 5, 8], [3, 6, 9]]

zip函数接受任意多个序列作为参数,将所有序列按相同的索引组合成一个元素是各个序列合并成的tuple的新序列,新的序列的长度以参数中最短的序列为准。另外(*)操作符与zip函数配合可以实现与zip相反的功能,即将合并的序列拆成多个tuple。

①tuple的新序列

>>>>x=[1,2,3],y=['a','b','c']

>>>zip(x,y)

[(1,'a'),(2,'b'),(3,'c')]

②新的序列的长度以参数中最短的序列为准.

>>>>x=[1,2],y=['a','b','c']

>>>zip(x,y)

[(1,'a'),(2,'b')]

③(*)操作符与zip函数配合可以实现与zip相反的功能,即将合并的序列拆成多个tuple。

>>>>x=[1,2,3],y=['a','b','c']

>>>>zip(*zip(x,y))

[(1,2,3),('a','b','c')]

 其他高级应用:

1.zip打包解包列表和倍数

>>> a = [1, 2, 3]

>>> b = ['a', 'b', 'c']

>>> z = zip(a, b)

>>> z

[(1, 'a'), (2, 'b'), (3, 'c')]

>>> zip(*z)

[(1, 2, 3), ('a', 'b', 'c')]

2. 使用zip合并相邻的列表项

>>> a = [1, 2, 3, 4, 5, 6]

>>> zip(*([iter(a)] * 2))

[(1, 2), (3, 4), (5, 6)]

>>> group_adjacent = lambda a, k: zip(*([iter(a)] * k))

>>> group_adjacent(a, 3)

[(1, 2, 3), (4, 5, 6)]

>>> group_adjacent(a, 2)

[(1, 2), (3, 4), (5, 6)]

>>> group_adjacent(a, 1)

[(1,), (2,), (3,), (4,), (5,), (6,)]

>>> zip(a[::2], a[1::2])

[(1, 2), (3, 4), (5, 6)]

>>> zip(a[::3], a[1::3], a[2::3])

[(1, 2, 3), (4, 5, 6)]

>>> group_adjacent = lambda a, k: zip(*(a[i::k] for i in range(k)))

>>> group_adjacent(a, 3)

[(1, 2, 3), (4, 5, 6)]

>>> group_adjacent(a, 2)

[(1, 2), (3, 4), (5, 6)]

>>> group_adjacent(a, 1)

[(1,), (2,), (3,), (4,), (5,), (6,)]

3.使用zip和iterators生成滑动窗口 (n -grams)

>>> from itertools import islice

>>> def n_grams(a, n):

... z = (islice(a, i, None) for i in range(n))

... return zip(*z)

...

>>> a = [1, 2, 3, 4, 5, 6]

>>> n_grams(a, 3)

[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]

>>> n_grams(a, 2)

[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]

>>> n_grams(a, 4)

[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]

4.使用zip反转字典

>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}

>>> m.items()

[('a', 1), ('c', 3), ('b', 2), ('d', 4)]

>>> zip(m.values(), m.keys())

[(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')]

>>> mi = dict(zip(m.values(), m.keys()))

>>> mi

{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

(原文地址:http://www.cnblogs.com/BeginMan/archive/2013/03/14/2959447.html)

 

 

以上是 [转]Python零碎知识(2):强大的zip 的全部内容, 来源链接: utcz.com/z/389001.html

回到顶部