python-生成器、迭代器、装饰器

python

目录

  • 动态语言和静态语言
  • slots
  • 生成器

    • 创建生成器的方法1
    • 创建生成器的方法2
    • 生成器的send和__next__方法

  • 迭代器

    • 可迭代对象
    • 总结

  • 闭包

    • 什么是闭包
    • 闭包再理解
    • 闭包思考

  • 装饰器

    • 装饰器(decorator)功能
    • 引入
    • 再谈装饰器
    • 装饰器举例

动态语言和静态语言

动态语言可以在运行的过程中修改代码,例如python在运行的过程中给已创建好的类添加属性和方法。

静态语言在编译时已经确定好代码,在运行过程中不能修改代码

那么问题来了,如果我们不想在python的运行中,或者让别人在调用我们的模块时添加新的属性,我们就需要使用python定义的一个特殊变量:_slots_

_slots_

在定义一个类的时候使用这个变量,可以限制类的实例添加属性

class Person(object):

__slots__ = ('name','age')

p = person()

p.name = 'laowang'

p.age = 20

p.heigt = 180

>> AttributeError: Person instance has no attribute 'score'

注意:

使用__slots__定义的属性仅针对当前类的实例起作用,对继承自该类的子类不起作用

生成器

首先思考一个问题,当某个函数隔一段时间需要去从一个列表中获取一个数据,那假设这个函数要不断获取1百万个数据时,需要先把这一百万个数据全都放在列表里吗?答案是否定的,这会非常浪费内存空间。所以生成器产生了,在python中,一边循环一边计算的机制成为生成器:generator,我是这样理解的:先定义一个按需求循环生产数据的对象,不需要一次全部生产出来,当每次另一边需要时,从这个对象里面取出一个值使用就好了,这样可以节省内存空间,同时也方便多个对象来使用它。

创建生成器的方法1

G = ( x*2 for x in range(5))

>>G

>><generator object <genexpr> at 0x7f626c132db0>

>>next(G)

>>0

>>next(G)

>>2

创建生成器的方法2

除了用简单的for方法,我们还可以用函数来实现生成器

def fib(times):

n = 0

a,b = 0,1

while n<times:

yield b

a,b = b,a+b

n+1

retrue 'done'

F = fib(5)

next(F)

>>1

next(F)

>>1

next(F)

>>2

注意,这里使用了yield,相当于执行到yield之后,这个函数会进入阻塞状态。再次调用时,从yield下方开始,再到yield停止。当这个生成器的值被取完后,再次取值程序会报错,返回done。所以一定要注意生成器的剩余值情况。

生成器的send和__next__方法

def gen():

i = 0

while i<5:

temp = yield i

print(temp)

i += 1

>> f = gen()

>> f.__next__()

>> 0

>> f.__next__()

>> None

>> 1

>> f.send('laowang')

>> laowang

>> 2

从上两块代码可见,_next_()方法跟next(f)实现了相同的效果。

前面提到过,yield后,程序会进入阻塞状态,另外赋值语句是先执行等号的右边,再执行等号的左边,所以send方法发送的参数会传递给temp,这就意味着处理数据的函数和生成器可以“沟通”下一步该怎么生产数据

迭代器

迭代是访问集合的一种方式,迭代器是一个可以记住遍历的位置的对象,迭代器对象从集合的第一个元素开始访问,知道所有元素都被访问完结束。

可迭代对象

以直接作用于 for 循环的数据类型有以下几种:

一类是集合数据类型,如 list 、 tuple 、 dict 、 set 、 str 等;

一类是 generator ,包括生成器和带 yield 的generator function。

这些可以直接作用于 for 循环的对象统称为可迭代对象: Iterable。

生成器都是 Iterator 对象,但 list 、 dict 、 str 虽然是可迭代的 Iterable ,却不是迭代器(Iterator)。

总结

  • 凡是可作用于 for 循环的对象都是 Iterable 类型;
  • 凡是可作用于 next() 函数的对象都是 Iterator 类型
  • 集合数据类型如 list 、 dict 、 str 等是 Iterable 但不是 Iterator ,不过可以通过 iter() 函数获得一个 Iterator 对象。

闭包

首先举个例子

def test():

print('233')

x = test

print(id(x))

print(id(test))

x()

>> 140212571149040

>> 140212571149040

>> 233

x实际上是引用了test函数的地址,并不是直接创建了一个新的函数或者使用了一个新的地址。

什么是闭包

在函数内部再定义一个函数,并且这个函数用到了外边函数的变量,那么将这个函数及用到的一些变量称之为闭包

def test(num_out):

def test_in(num_in):

print(num_in)

return num_out + num_in

return test_in # 注意返回的是内部函数地址

ret = test(20) # 20给num_out,因为都在一个函数内部,所以变量是可以使用的

print(ret(100)) # 100给num_in

>> 100

>> 120

这里需要注意ret = test(100)直接执行到return test_in 将内部函数的地址返回给ret,所以才能打印。

闭包再理解

def line_conf(a, b):

def line(x):

return a*x + b

return line

line1 = line_conf(1, 1)

line2 = line_conf(4, 5)

print(line1(5))

print(line2(5))

在创建闭包的时候,我们通过line_conf的参数a,b说明了这两个变量的取值,这样,我们就确定了函数的最终形式(y = x + 1和y = 4x + 5)。我们只需要变换参数a,b,就可以获得不同的直线表达函数。由此,我们可以看到,闭包也具有提高代码可复用性的作用。

如果没有闭包,我们需要每次创建直线函数的时候同时说明a,b,x。这样,我们就需要更多的参数传递,也减少了代码的可移植性。

闭包可以帮我们把相同规律的事情总结一下,初始化部分交给一个函数,后续操作交给另一个函数,让事情变得层次分明,同时也更方便操作。

闭包思考

1.闭包似优化了变量,原来需要类对象完成的工作,闭包也可以完成

2.由于闭包引用了外部函数的局部变量,则外部函数的局部变量没有及时释放,消耗内存

装饰器

作为python3的新特性,装饰器可以提高开发效率,也是python面试中经常会问的问题。

首先对函数名要有这样的理解,名字只是代表了对一个空间的引用,它是可以改变的

def foo():

print('ffffooo')

foo = lambda x:x+1

foo()

>>TypeError: <lambda>() missing 1 required positional argument: 'x'

肯定会报错,因为foo指向的引用地址改变了。

装饰器(decorator)功能

  • 引入日志
  • 函数执行时间统计
  • 执行函数前预备处理
  • 执行函数后清理功能
  • 权限校验等场景
  • 缓存

引入

假设某公司让一个开发部门开发了一些功能,让四个部门分别使用自己的功能,所以要在四个部门使用前验证一次身份,以保证安全性。

已实现的完整功能:

def f1():

print('f1')

def f2():

print('f2')

调用:

# A部门使用f1

# B部门使用f2

# 因为要验证,所以某开发人员又将函数写成了如下形式,

def check()

验证身份

def f1():

check()

print('f1')

def f2():

check()

print('f2')

# 然后再让A部门调用f1,B部门调用f2

虽然也完成了想要的功能,但违反了开放封闭原则,即已实现的功能代码块不允许被修改,但可以扩展(修改复杂业务逻辑的代码容易出现bug,但可以在参数传入前加工一下或数据处理后再进行修正)

  • 开放:对扩展开发
  • 封闭:已实现的功能代码块

所以需要结合闭包将代码改成如下形式

def w1(func):

def inner():

print('check')

func()

print("i am inner", id(inner))

return inner

@w1

def f1():

print('i am f1', id(f1))

print('f1')

f1()

>>

i am inner 2814185593032

check

i am f1 2814185593032

f1

此时,我们再不修改f1的情况下完成了验证,那代码的执行逻辑是怎么的呢?

最关键的一点是@w1 > f1 = w1(f1)

w1执行后会将f1的引用传递给func(以供inner调用它),然后打印inner函数的id,再将inner的引用返回给f1

f1():执行f1,则f1实际上的引用指向的是inner,所以会执行整个inner函数,而inner中又包含了f1的引用,这样就可以再f1功能执行前加入一些需要的操作,例如之前提到的验证身份

所以@w1就是所谓的装饰器,@函数名 是python中的一种语法糖

再谈装饰器

# 定义函数:完成包裹数据

def makeBold(fn2):

def wrapped2():

return "<b>" + fn2() + "</b>"

return wrapped2

# 定义函数:完成包裹数据

def makeItalic(fn1):

def wrapped1():

return "<i>" + fn1() + "</i>"

return wrapped1

@makeBold

@makeItalic

def test():

return "hello world"

print(test())

>> <b><i>hello world</i></b>

@makeBold

@makeItalic

这里会先执行makeItalic,再执行makeBold,因为这个语法糖需要对函数操作,没有函数就让下面的先执行。

@makeItalic  # test = makeItalic(test) -> makeItalic-wrapped1, fn1 -> test(原始内存空间的引用)

@makeBold # test(引用已改变) = makeBold(test) -> makeBold-wrapped2, fn2 -> makeItalic-wrapped1

装饰器举例

被装饰的函数有不定长参数

from time import ctime, sleep

def timefun(func):

def wrappedfunc(*args, **kwargs):

print("%s called at %s"%(func.__name__, ctime()))

func(*args, **kwargs)

return wrappedfunc

@timefun

def foo(a, b, c):

print(a+b+c)

foo(3, 5, 7)

sleep(2)

foo(1, 4, 6)

被装饰的函数有return的处理

from time import ctime, sleep

def timefun(func):

def wrappedfunc():

print("%s called at %s"%(func.__name__, ctime()))

func()

return wrappedfunc

@timefun

def getInfo():

return 'haha'

print(getInfo())

>> None

# getInfo被装饰后,因为return的'haha'是给的func(),而不是getInfo,因此getInfo是没有返回值的,所以打印的是None。

# 需要将func()修改成 return func(),才返回给getInfo,然后打印出'haha'

总结:为了装饰器更通用,一般可以有return

装饰器带参数,在原有装饰器的基础上,设置变量

from time import ctime, sleep

def timefun_arg(pre="hello"):

print('tag1, ', pre)

def timefun(func):

def wrappedfunc():

print("%s called at %s %s"%(func.__name__, ctime(), pre))

return func()

return wrappedfunc

return timefun

@timefun_arg("itcast")

def foo():

print("I am foo")

print('tag2')

sleep(2)

foo()

>>输出:

tag1, itcast

tag2

foo called at Sun Dec 9 21:43:36 2018 itcast

I am foo

可见,当装饰器带有参数后,它会先去执行装饰器函数,而以前没有带入参数时它会直接装饰下方定义的函数。这样的话我们就可以给装饰器添加一些变量或者常用量

以上是 python-生成器、迭代器、装饰器 的全部内容, 来源链接: utcz.com/z/388713.html

回到顶部