Python文件读取

python

读取文件Advertising.csv,文件内容类似于:

 1 ,TV,Radio,Newspaper,Sales

2 1,230.1,37.8,69.2,22.1

3 2,44.5,39.3,45.1,10.4

4 3,17.2,45.9,69.3,9.3

5 4,151.5,41.3,58.5,18.5

6 5,180.8,10.8,58.4,12.9

7 6,8.7,48.9,75,7.2

8 7,57.5,32.8,23.5,11.8

9 8,120.2,19.6,11.6,13.2

10 9,8.6,2.1,1,4.8

11 10,199.8,2.6,21.2,10.6

12 11,66.1,5.8,24.2,8.6

13 12,214.7,24,4,17.4

14 13,23.8,35.1,65.9,9.2

15 14,97.5,7.6,7.2,9.7

16 15,204.1,32.9,46,19

17 16,195.4,47.7,52.9,22.4

18 17,67.8,36.6,114,12.5

19 18,281.4,39.6,55.8,24.4

20 19,69.2,20.5,18.3,11.3

21 20,147.3,23.9,19.1,14.6

View Code

手动读取:

 1 path = '8.Advertising.csv'

2 f = file(path)

3 x = []

4 y = []

5 for i, d in enumerate(f):

6 if i == 0: #第一行是标题栏

7 continue

8 d = d.strip() #去除首位空格

9 if not d:

10 continue

11 d = map(float, d.split(',')) #每个数据都变为float

12 x.append(d[1:-1])

13 y.append(d[-1])

View Code

python自带库:

1 f = file(path, 'rb')

2 print f

3 d = csv.reader(f)

4 for line in d:

5 print line

6 f.close()

View Code

numpy:

1  p = np.loadtxt(path, delimiter=',', skiprows=1)

2 print p

View Code

pandas:

1 data = pd.read_csv(path)    # TV、Radio、Newspaper、Sales

2 x = data[['TV', 'Radio', 'Newspaper']]

3 # x = data[['TV', 'Radio']]

4 y = data['Sales']

View Code

 使用sklearn作文件预处理:

1 from sklearn.preprocessing import StandardScaler

2 le = preprocessing.LabelEncoder()

3 le.fit(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'])

4 print le.classes_

5 y = le.transform(y)

View Code

以上是 Python文件读取 的全部内容, 来源链接: utcz.com/z/388439.html

回到顶部