Python中的并行编程速度

python

  这里主要想记录下今天碰到的一个小知识点:Python中的并行编程速率如何?

  我想把AutoTool做一个并行化改造,主要目的当然是想提高多任务的执行速度。第一反应就是想到用多线程执行不同模块任务,但是在我收集Python多线程编程资料的时候发现一个非常奇怪的信息,那就是Python的多线程并不是真正的多线程,因为有一个GIL的存在(可以参考这篇文章讲解《Python最难的问题》)导致Python实际上默认(CPython解释器)只能是单线程执行。

  这里我写了一个例子可以看看:

  1 #!/usr/bin/env python

2 # -*- coding: utf-8 -*-

3 # @File : batch_swig_runner.py

4 # @Time : 2019/7/8 18:09

5 # @Author : KuLiuheng

6 # @Email : liuheng.klh@alibaba-inc.com

7

8 from swig_runner import SwigRunner

9

10 import time

11 import logging

12 from threading import Thread

13 from multiprocessing import Pool

14

15

16 class TestRunner(Thread):

17 def __init__(self, name, path):

18 super(TestRunner, self).__init__()

19 self.name = name

20 self.path = path

21

22 def run(self):

23 logging.warning("Message from the thread-%s START" % self.name)

24 for i in range(10000000): # 耗时操作模拟

25 j = int(i) * 10.1

26 # time.sleep(1)

27 logging.warning("Message from the thread-%s END" % self.name)

28 return self.path

29

30

31 def multi_process(mname, mpath):

32 logging.warning("Message from the thread-%s START" % mname)

33 for i in range(10000000): # 耗时操作模拟

34 j = int(i) * 10.1

35 # time.sleep(1)

36 logging.warning("Message from the thread-%s END" % mname)

37

38

39 class BatchSwigRunner(object):

40 def __init__(self, modules=None):

41 """

42 用模块信息字典(工程名: 工程路径)来初始化

43 :param modules: {工程名: 工程路径}

44 """

45 if modules is not None:

46 self._modules = modules

47 else:

48 self._modules = dict()

49

50 def add_module_info(self, name, path):

51 self._modules[name] = path

52

53 def start(self):

54 """

55 启动批量任务执行,并返回执行过程中的错误信息

56 :return: list(工程序号,工程名称) 出错的工程信息列表

57 """

58 runners = list()

59 for (project_name, project_path) in self._modules.items():

60 # logging.warning('BatchSwigRunner.start() [%s][%s]' % (project_name, project_path))

61 sub_runner = TestRunner(project_name, project_path)

62 sub_runner.daemon = True

63 sub_runner.start()

64 runners.append(sub_runner)

65

66 for runner in runners:

67 runner.join()

68

69

70 if __name__ == '__main__':

71 batch_runner = BatchSwigRunner()

72 batch_runner.add_module_info('name1', 'path1')

73 batch_runner.add_module_info('name2', 'path2')

74 batch_runner.add_module_info('name3', 'path3')

75 batch_runner.add_module_info('name4', 'path4')

76 start_time = time.time()

77 batch_runner.start()

78

79 print 'Total time comsumed = %.2fs' % (time.time() - start_time)

80

81 print('========================================')

82 start_time = time.time()

83

84 for index in range(4):

85 logging.warning("Message from the times-%d START" % index)

86 for i in range(10000000): # 耗时操作模拟

87 j = int(i) * 10.1

88 # time.sleep(1)

89 logging.warning("Message from the times-%d END" % index)

90

91 print '>>Total time comsumed = %.2fs' % (time.time() - start_time)

92

93 print('----------------------------------------------')

94 start_time = time.time()

95

96 pool = Pool(processes=4)

97 for i in range(4):

98 pool.apply_async(multi_process, ('name++%d' % i, 'path++%d' % i))

99 pool.close()

100 pool.join()

101 print '>>>> Total time comsumed = %.2fs' % (time.time() - start_time)

View Code

   看结果就发现很神奇的结论:

C:\Python27\python.exe E:/VirtualShare/gitLab/GBL-310/GBL/AutoJNI/autoTool/common/batch_swig_runner.py

WARNING:root:Message from the thread-name4 START

WARNING:root:Message from the thread-name2 START

WARNING:root:Message from the thread-name3 START

WARNING:root:Message from the thread-name1 START

WARNING:root:Message from the thread-name2 END

WARNING:root:Message from the thread-name4 END

WARNING:root:Message from the thread-name3 END

Total time comsumed = 15.92s

========================================

WARNING:root:Message from the thread-name1 END

WARNING:root:Message from the times-0 START

WARNING:root:Message from the times-0 END

WARNING:root:Message from the times-1 START

WARNING:root:Message from the times-1 END

WARNING:root:Message from the times-2 START

WARNING:root:Message from the times-2 END

WARNING:root:Message from the times-3 START

WARNING:root:Message from the times-3 END

>>Total time comsumed = 11.59s

----------------------------------------------

WARNING:root:Message from the thread-name++0 START

WARNING:root:Message from the thread-name++1 START

WARNING:root:Message from the thread-name++2 START

WARNING:root:Message from the thread-name++3 START

WARNING:root:Message from the thread-name++1 END

WARNING:root:Message from the thread-name++0 END

WARNING:root:Message from the thread-name++2 END

WARNING:root:Message from the thread-name++3 END

>>>> Total time comsumed = 5.69s

Process finished with exit code 0

View Code

  其运行速度是(计算密集型):multiprocessing > normal > threading.Thread

  请注意这里用的是持续计算来模拟耗时操作:

for i in range(10000000):   # 耗时操作模拟

j = int(i) * 10.1

  如果用空等待(time.sleep(1)类似IO等待)来模拟耗时操作,那么结果就是(IO等待型):threading.Thread > multiprocessing > normal

C:\Python27\python.exe E:/VirtualShare/gitLab/GBL-310/GBL/AutoJNI/autoTool/common/batch_swig_runner.py

WARNING:root:Message from the thread-name4 START

WARNING:root:Message from the thread-name2 START

WARNING:root:Message from the thread-name3 START

WARNING:root:Message from the thread-name1 START

WARNING:root:Message from the thread-name3 END

WARNING:root:Message from the thread-name4 END

WARNING:root:Message from the thread-name2 END

WARNING:root:Message from the thread-name1 END

WARNING:root:Message from the times-0 START

Total time comsumed = 1.01s

========================================

WARNING:root:Message from the times-0 END

WARNING:root:Message from the times-1 START

WARNING:root:Message from the times-1 END

WARNING:root:Message from the times-2 START

WARNING:root:Message from the times-2 END

WARNING:root:Message from the times-3 START

WARNING:root:Message from the times-3 END

>>Total time comsumed = 4.00s

----------------------------------------------

WARNING:root:Message from the thread-name++0 START

WARNING:root:Message from the thread-name++1 START

WARNING:root:Message from the thread-name++2 START

WARNING:root:Message from the thread-name++3 START

WARNING:root:Message from the thread-name++0 END

WARNING:root:Message from the thread-name++1 END

WARNING:root:Message from the thread-name++2 END

WARNING:root:Message from the thread-name++3 END

>>>> Total time comsumed = 1.73s

Process finished with exit code 0

View Code

   为何会有这样的结果呢?

(1)threading机制中因为GIL的存在,实际上是一把全局锁让多线程变成了CPU线性执行,只可能用到一颗CPU计算。当sleep这样是释放CPU操作发生时,可以迅速切换线程,切换速度可以接受(比multiprocessing快),比normal(阻塞等待)当然快的多;

(2)这里用了多进程Pool,可以真正意义上使用多CPU,对于CPU计算密集型的操作(上面的for循环计算)那么肯定是多核比单核快。所以就出现了第一种测试场景的结果。

以上是 Python中的并行编程速度 的全部内容, 来源链接: utcz.com/z/387914.html

回到顶部