Python爬虫架构模板 —— 教你规范写爬虫

python

讲解了这么多期的python爬虫教程,那你真的会写爬虫了吗?为什么这样问呢,因为我们日常写小爬虫都是一个py文件加上几个请求,但是如果你去写一个正式的项目时,你必须考虑到很多种情况,所以我们需要把这些功能全部模块化,这样也使我们的爬虫更加的健全。


1、爬虫基础架构与运行流程

首先,聊一聊基础爬虫的架构到底是什么样的?这里给出一张结构图:

可以看到,基础爬虫架构分为5块:爬虫调度器、URL管理器、HTML下载器、HTML解析器、数据存储器。

下面来介绍一下这5个大类的功能:

1. 爬虫调度器:主要是配合调用其他四个模块,所谓调度就是取调用其他的模板。
2. URL管理器:负责管理URL链接的,URL链接分为已爬取的和未爬取的,这就需要URL管理器来管理它们,同时它也为获取新URL链接提供接口。
3. HTML下载器:将要爬取的页面的HTML下载下来。
4. HTML解析器:将要爬取的数据从HTML源码中获取出来,同时也将新的URL链接发送给URL管理器以及将处理后的数据发送给数据存储器。
5.数据存储器:将HTML下载器发送过来的数据存储到本地。


2、爬取菜鸟笔记信息

对整体的架构有了初步的认识之后,下面来简单演示一遍用爬虫架构来爬取信息(以菜鸟教程为例)

我们来获取上面列表中的信息,这里省略了分析网站的一步,如果大家不会分析,可以去看我之前写的爬虫项目。

首先,我们来写一下URL管理器(URLManage.py)

class URLManager(object):

def __init__(self):

self.new_urls = set()

self.old_urls = set()

def has_new_url(self):

# 判断是否有未爬取的url

return self.new_url_size()!=0

def get_new_url(self):

# 获取一个未爬取的链接

new_url = self.new_urls.pop()

# 提取之后,将其添加到已爬取的链接中

self.old_urls.add(new_url)

return new_url

def add_new_url(self, url):

# 将新链接添加到未爬取的集合中(单个链接)

if url is None:

return

if url not in self.new_urls and url not in self.old_urls:

self.new_urls.add(url)

def add_new_urls(self,urls):

# 将新链接添加到未爬取的集合中(集合)

if urls is None or len(urls)==0:

return

for url in urls:

self.add_new_url(url)

def new_url_size(self):

# 获取未爬取的url大小

return len(self.new_urls)

def old_url_size(self):

# 获取已爬取的url大小

return len(self.old_urls)

在这里主要就是两个集合,一个是已爬取URL的集合,另一个是未爬取URL的集合。这里我使用的是set类型,因为set自带去重的功能。

接下来,HTML下载器(HTMLDownload.py)

import requests

class HTMLDownload(object):

def download(self, url):

if url is None:

return

s = requests.Session()

s.headers[\'User-Agent\'] =\'Mozilla / 5.0(Windows NT 10.0;WOW64) AppleWebKit / 537.36(KHTML, likeGecko) Chrome / 63.0.3239.132Safari / 537.36\'

res = s.get(url)

# 判断是否正常获取

if res.status_code == 200:

res.encoding=\'utf-8\'

res = res.text

return res

return None

可以看到这里我们只是简单的获取了,url中的html源码

接着看HTML解析器(HTMLParser.py)

import re

from bs4 import BeautifulSoup

class HTMLParser(object):

def parser(self, page_url, html_cont):

\'\'\'

用于解析网页内容,抽取URL和数据

:param page_url: 下载页面的URL

:param html_cont: 下载的网页内容

:return: 返回URL和数据

\'\'\'

if page_url is None or html_cont is None:

return

soup = BeautifulSoup(html_cont, \'html.parser\')

new_urls = self._get_new_urls(page_url, soup)

new_data = self._get_new_data(page_url, soup)

return new_urls, new_data

def _get_new_urls(self,page_url,soup):

\'\'\'

抽取新的URL集合

:param page_url:下载页面的URL

:param soup: soup数据

:return: 返回新的URL集合

\'\'\'

new_urls = set()

for link in range(1,100):

# 添加新的url

new_url = "http://www.runoob.com/w3cnote/page/"+str(link)

new_urls.add(new_url)

print(new_urls)

return new_urls

def _get_new_data(self,page_url,soup):

\'\'\'

抽取有效数据

:param page_url:下载页面的url

:param soup:

:return: 返回有效数据

\'\'\'

data={}

data[\'url\'] = page_url

title = soup.find(\'div\', class_=\'post-intro\').find(\'h2\')

print(title)

data[\'title\'] = title.get_text()

summary = soup.find(\'div\', class_=\'post-intro\').find(\'p\')

data[\'summary\'] = summary.get_text()

return data

在这里,我们将HTML下载器的源码进行了分析和解析,从而得到了我们想要拿到的数据,对BeautifulSoup不了解的可以去看一下我之前写的文章。

继续看,数据存储器(DataOutput.py)

import codecs

class DataOutput(object):

def __init__(self):

self.datas = []

def store_data(self,data):

if data is None:

return

self.datas.append(data)

def output_html(self):

fout = codecs.open(\'baike.html\', \'a\', encoding=\'utf-8\')

fout.write("<html>")

fout.write("<head><meta charset=\'utf-8\'/></head>")

fout.write("<body>")

fout.write("<table>")

for data in self.datas:

fout.write("<tr>")

fout.write("<td>%s</td>"%data[\'url\'])

fout.write("<td>《%s》</td>" % data[\'title\'])

fout.write("<td>[%s]</td>" % data[\'summary\'])

fout.write("</tr>")

self.datas.remove(data)

fout.write("</table>")

fout.write("</body>")

fout.write("</html>")

fout.close()

大家可能发现我这里是将数据存储到一个html的文件当中,你也可以存在Mysql或者csv等文件当中,这里为了演示就放在了html当中。

最后一个,爬虫调度器(SpiderMan.py)

from base.DataOutput import DataOutput

from base.HTMLParser import HTMLParser

from base.HTMLDownload import HTMLDownload

from base.URLManager import URLManager

class SpiderMan(object):

def __init__(self):

self.manager = URLManager()

self.downloader = HTMLDownload()

self.parser = HTMLParser()

self.output = DataOutput()

def crawl(self, root_url):

# 添加入口URL

self.manager.add_new_url(root_url)

# 判断url管理器中是否有新的url,同时判断抓取多少个url

while(self.manager.has_new_url() and self.manager.old_url_size()<100):

try:

# 从URL管理器获取新的URL

new_url = self.manager.get_new_url()

print(new_url)

# HTML下载器下载网页

html = self.downloader.download(new_url)

# HTML解析器抽取网页数据

new_urls, data = self.parser.parser(new_url, html)

print(new_urls)

# 将抽取的url添加到URL管理器中

self.manager.add_new_urls(new_urls)

# 数据存储器存储文件

self.output.store_data(data)

print("已经抓取%s个链接" % self.manager.old_url_size())

except Exception as e:

print("failed")

print(e)

# 数据存储器将文件输出成指定的格式

self.output.output_html()

if __name__ == \'__main__\':

spider_man = SpiderMan()

spider_man.crawl("http://www.runoob.com/w3cnote/page/1")

最后调用主函数执行前面四个模板,下面是运行后的结果:

总结

我们简单的讲解了一下爬虫架构的五个模板,无论是大型爬虫项目还是小型的爬虫项目都离不开这五个模板,大家在写爬虫的时候可以看一下,这样写爬虫项目会使你的爬虫看起来更加的规范、健全。


如有错误,欢迎私信纠正,谢谢支持!

以上是 Python爬虫架构模板 —— 教你规范写爬虫 的全部内容, 来源链接: utcz.com/z/387608.html

回到顶部