python-线程池

python

********线程池********

Python标准模块--Concurrent.futures

1.介绍

Concurrent.futures模块提供了高度封装的异步调用接口

ThreadPoolExecutor:线程池,提供异步调用

ProcessPoolExecutor:进程池,提供异步调用

Both implement the same interface, which is defined by the abstract Executor class.

2.基本方法

#submit(fn, *args, **kwargs)

异步提交任务

#map(func, *iterables, timeout=None, chunksize=1)

取代for循环submit的操作

#shutdown(wait=True)

相当于进程池的pool.close()+pool.join()操作

wait=True,等待池内所有任务执行完毕回收完资源后才继续

wait=False,立即返回,并不会等待池内的任务执行完毕

但不管wait参数为何值,整个程序都会等到所有任务执行完毕

submit和map必须在shutdown之前

#result(timeout=None)

取得结果

#add_done_callback(fn)

回调函数

****ProcessPoolExecutor****

# 介绍

'''

The ProcessPoolExecutor class is an Executor subclass that uses a pool of processes

to execute calls asynchronously. ProcessPoolExecutor uses the multiprocessing module,

which allows it to side-step the Global Interpreter Lock but also means that only

picklable objects can be executed and returned.

class concurrent.futures.ProcessPoolExecutor(max_workers=None, mp_context=None)

An Executor subclass that executes calls asynchronously using a pool of at most

max_workers processes. If max_workers is None or not given, it will default to

the number of processors on the machine. If max_workers is lower or equal to 0,

then a ValueError will be raised.

'''

# 用法

from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor

import os, time, random

def task(n):

print('%s is runing' % os.getpid())

time.sleep(random.randint(1, 3))

return n ** 2

if __name__ == '__main__':

executor = ProcessPoolExecutor(os.cpu_count() + 1)

futures = []

for i in range(11):

future = executor.submit(task, i)

futures.append(future)

executor.shutdown(True)

print('+++>')

for future in futures:

print(future.result())

*****ThreadPoolExecutor****

#介绍

'''

ThreadPoolExecutor is an Executor subclass that uses a pool of threads to execute calls asynchronously.

class concurrent.futures.ThreadPoolExecutor(max_workers=None, thread_name_prefix='')

An Executor subclass that uses a pool of at most max_workers threads to execute calls asynchronously.

Changed in version 3.5: If max_workers is None or not given, it will default to the number of processors

on the machine, multiplied by 5, assuming that ThreadPoolExecutor is often used to overlap I/O instead of

CPU work and the number of workers should be higher than the number of workers for ProcessPoolExecutor.

New in version 3.6: The thread_name_prefix argument was added to allow users to control the threading.

Thread names for worker threads created by the pool for easier debugging.

'''

#用法

#与ProcessPoolExecutor相同

*****map****

from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor

import os, time, random

def task(n):

print('%s is runing' % os.getpid())

time.sleep(random.randint(1, 3))

return n ** 2

if __name__ == '__main__':

executor = ThreadPoolExecutor(os.cpu_count() * 5)

# for i in range(41):

# future=executor.submit(task,i)

executor.map(task, range(1, 42)) # map取代了for+submit

****回调函数****

from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor

from multiprocessing import Pool

import requests

import json

import os

def get_page(url):

print('<进程%s> get %s' % (os.getpid(), url))

respone = requests.get(url)

if respone.status_code == 200:

return {'url': url, 'text': respone.text}

def parse_page(res):

res = res.result()

print('<进程%s> parse %s' % (os.getpid(), res['url']))

parse_res = 'url:<%s> size:[%s]\n' % (res['url'], len(res['text']))

with open('db.txt', 'a') as f:

f.write(parse_res)

if __name__ == '__main__':

urls = [

'https://www.baidu.com',

'https://www.python.org',

'https://www.openstack.org',

'https://help.github.com/',

'http://www.sina.com.cn/'

]

# p=Pool(3)

# for url in urls:

# p.apply_async(get_page,args=(url,),callback=pasrse_page)

# p.close()

# p.join()

p = ProcessPoolExecutor(3)

for url in urls:

p.submit(get_page, url).add_done_callback(parse_page) # parse_page拿到的是一个future对象obj,需要用obj.result()拿到结果

以上是 python-线程池 的全部内容, 来源链接: utcz.com/z/386978.html

回到顶部