c++与python混合编程

python

本文分4个部分

  1. C/C++ 调用 Python (基础篇)— 仅讨论Python官方提供的实现方式
  2. Python 调用 C/C++ (基础篇)— 仅讨论Python官方提供的实现方式
  3. C/C++ 调用 Python (高级篇)— 使用 Cython
  4. Python 调用 C/C++ (高级篇)— 使用 SWIG

1 C/C++ 调用 Python(基础篇)
Python 本身就是一个C库。你所看到的可执行体python只不过是个stub。真正的python实体在动态链接库里实现,在Windows平台上,这个文件位于 %SystemRoot%\System32\python27.dll。

调用示例:

//my_python.c

#include <Python.h>

int main(int argc, char *argv[])

{

Py_SetProgramName(argv[0]);

Py_Initialize();

PyRun_SimpleString("print \'Hello Python!\'\n");//此接口可执行字符串形式的代码

Py_Finalize();

return 0;

}

在Windows平台下,利用vs命令提示符,编译命令为

cl my_python.c -IC:Python27\include C:\Python27\libs\python27.lib

在linux下编译命令:

gcc my_python.c -o my_python -I/usr/include/python2.7/ -lpython2.7

虽然非常简单,但这段代码除了能用C语言动态生成一些Python代码之外,并没有什么用处。我们需要的是C语言的数据结构能够和Python交互。

下面举个例子,比如我们写了一个功能强大的python函数:

def great_function(a):

return a+1

接下来把它封装成c的函数,我们期待的c语言对应的函数应该是这样的:

int great_function_from_python(int a)

{

int res;

// some magic

return res;

}

首先,复用Python模块\'import\',这里也不例外。我们把great_function放到一个moudle中,比如这个module名字叫great_module.py

接下来c调用python的完整代码:

#include <Python.h>

int great_function_from_python(int a)

{

int res;

PyObject *pModule,*pFunc;

PyObject *pArgs,*pValue;

/* import */

pModule = PyImport_Import(PyString_FromString("great_module"));

/* great_module.great_function */

pFunc = PyObject_GetAttrString(pModule, "great_function");

/* build args */

pArgs = PyTuple_New(1);

PyTuple_SetItem(pArgs,0, PyInt_FromLong(a));

/* call */

pValue = PyObject_CallObject(pFunc, pArgs);

res = PyInt_AsLong(pValue);

return res;

}

从上述代码可以窥见Python内部运行的方式:

  • 所有Python元素,module、function、tuple、string等等,实际上都是PyObject。C语言里操纵它们,一律使用PyObject *。
  • Python的类型与C语言类型可以相互转换。Python类型XXX转换为C语言类型YYY要使用PyXXX_AsYYY函数;C类型YYY转换为Python类型XXX要使用PyXXX_FromYYY函数。
  • 也可以创建Python类型的变量,使用PyXXX_New可以创建类型为XXX的变量。
  • 若a是Tuple,则a[i] = b对应于 PyTuple_SetItem(a,i,b),有理由相信还有一个函数PyTuple_GetItem完成取得某一项的值。
  • 不仅Python语言很优雅,Python的库函数API也非常优雅

现在我们得到了一个C语言的函数了,可以写一个main测试它:

#include <Python.h>

int great_function_from_python(int a);

int main(int argc, char *argv[]) {

Py_Initialize();

printf("%d",great_function_from_python(2));

Py_Finalize();

}

2 Python 调用 C/C++(基础篇)
这种做法称为Python扩展。
比如说,我们有一个功能强大的C函数:

int great_function(int a){

return a+1;

}

期望Python里这样使用:

>>>from great_module import great_function

>>>great_function(2)

3

考虑最简单的情况,我们把强大功能的函数放入c文件great_module.c中

#include <Python.h>

int great_function(int a) {

return a + 1;

}

static PyObject * _great_function(PyObject *self, PyObject *args)

{

int _a;

int res;

if (!PyArg_ParseTuple(args, "i", &_a))

return NULL;

res = great_function(_a);

return PyLong_FromLong(res);

}

static PyMethodDef GreateModuleMethods[] = {

{

"great_function",

_great_function,

METH_VARARGS,

""

},

{NULL, NULL, 0, NULL}

};

PyMODINIT_FUNC initgreat_module(void) {

(void) Py_InitModule("great_module", GreateModuleMethods);

}

除了功能强大的函数great_function外,这个文件中还有以下部分:

  • 包裹函数_great_function。它负责将Python的参数转化为C的参数(PyArg_ParseTuple),调用实际的great_function,并处理great_function的返回值,最终返回给Python环境。
  • 导出表GreateModuleMethods。它负责告诉Python这个模块里有哪些函数可以被Python调用。导出表的名字可以随便起,每一项有4个参数:第一个参数是提供给Python环境的函数名称,第二个参数是_great_function,即包裹函数。第三个参数的含义是参数变长,第四个参数是一个说明性的字符串。导出表总是以{NULL, NULL, 0, NULL}结束。
  • 导出函数initgreat_module。这个的名字不是任取的,是你的module名称添加前缀init。导出函数中将模块名称与导出表进行连接。

Windows下vs编译命令:

cl /LD great_module.c /o great_module.pyd -IC:\Python27\include C:\Python27\libs\python27.lib

/LD 即生成动态链接库,编译成功后当前目录可得到great_module.pyd(实际上是dll),这个pyd在python下直接当作module使用

Linux下gcc编译:

gcc -fPIC -shared great_module.c -o great_module.so -I/usr/include/python2.7/ -lpython2.7

得到great_module.so,可以在python中直接使用

3 C/C++ 调用 Python(使用Cython)

在前面的小节中谈到,Python的数据类型和C的数据类型貌似是有某种“一一对应”的关系的,此外,由于Python(确切的说是CPython)本身是由C语言实现的,故Python数据类型之间的函数运算也必然与C语言有对应关系。那么,有没有可能“自动”的做替换,把Python代码直接变成C代码呢?答案是肯定的,这就是Cython主要解决的问题。

继续以例子说明:

#great_module.pyx

cdef public great_function(a,index):

return a[index];

这其中有非Python关键字cdef和public。这些关键字属于Cython。由于我们需要在C语言中使用“编译好的Python代码”,所以得让great_function从外面变得可见,方法就是以“public”修饰。而cdef类似于Python的def,只有使用cdef才可以使用Cython的关键字public。

安装Cython非常简单。Python 2.7.9以上的版本已经自带easy_install:

easy_install -U cython

在Windows环境下依然需要Visual Studio,由于安装的过程需要编译Cython的源代码,故上述命令需要在Visual Studio命令提示符下完成。一会儿使用Cython的时候,也需要在Visual Studio命令提示符下进行操作,这一点和第一部分的要求是一样的。

编译:cython great_module.pyx,

得到great_module.h和great_module.c;打开great_module.h有这样一句声明:

__PYX_EXTERN_C DL_IMPORT(PyObject) *great_function(PyObject *, PyObject *)

写一个main使用great_function。注意great_function并不规定a是何种类型,它的功能只是提取a的第index的成员而已,故使用great_function的时候,a可以传入Python String,也可以传入tuple之类的其他可迭代类型。仍然使用之前提到的类型转换函数PyXXX_FromYYY和PyXXX_AsYYY。

//main.c

#include <Python.h>

#include "great_module.h"

int main(int argc, char *argv[]) {

PyObject *tuple;

Py_Initialize();

initgreat_module();

printf("%s\n",PyString_AsString(

great_function(

PyString_FromString("hello"),

PyInt_FromLong(1)

)

));

tuple = Py_BuildValue("(iis)", 1, 2, "three");

printf("%d\n",PyInt_AsLong(

great_function(

tuple,

PyInt_FromLong(1)

)

));

printf("%s\n",PyString_AsString(

great_function(

tuple,

PyInt_FromLong(2)

)

));

Py_Finalize();

}

编译Windows下用cl,linux下用gcc,和第一部分一样。

这个例子中我们使用了Python的动态类型特性。如果你想指定类型,可以利用Cython的静态类型关键字。例子如下:

#great_module.pyx

cdef public char great_function(const char * a,int index):

return a[index]

cython编译后得到的.h文件里great_function的声明是这样的:

__PYX_EXTERN_C DL_IMPORT(char) great_function(char const *, int);

这样我们的main函数里就几乎看不到python的痕迹了:

//main.c

#include <Python.h>

#include "great_module.h"

int main(int argc, char *argv[]) {

Py_Initialize();

initgreat_module();

printf("%c",great_function("Hello",2));

Py_Finalize();

}

在这部分的最后我们给一个看似实用的应用(仅限于Windows):

利用刚刚的great_function.pyx,准备一个dllmain.c:

#include <Python.h>

#include <Windows.h>

#include "great_module.h"

extern __declspec(dllexport) int __stdcall _great_function(const char * a, int b) {

return great_function(a,b);

}

BOOL WINAPI DllMain(HINSTANCE hinstDLL,DWORD fdwReason,LPVOID lpReserved) {

switch( fdwReason ) {

case DLL_PROCESS_ATTACH:

Py_Initialize();

initgreat_module();

break;

case DLL_PROCESS_DETACH:

Py_Finalize();

break;

}

return TRUE;

}

vs命令提示符 cl /LD 编译会得到一个dllmain.dll,我们在excel里使用它(没错,传说中的Excel和python混合编程):

&amp;lt;img data-rawheight=&quot;797&quot; data-rawwidth=&quot;1007&quot; src=&quot;https://pic2.zhimg.com/2f45c9f2f8407d46f51f203efc2e8181_b.png&quot; class=&quot;origin_image zh-lightbox-thumb&quot; width=&quot;1007&quot; data-original=&quot;https://pic2.zhimg.com/2f45c9f2f8407d46f51f203efc2e8181_r.png&quot;&amp;gt;

参考资料:Cython的官方文档,质量非常高:
Welcome to Cython’s Documentation

4 Python调用C/C++(使用SWIG)

用C/C++对脚本语言的功能扩展是非常常见的事情,Python也不例外。除了SWIG,市面上还有若干用于Python扩展的工具包,比较知名的还有Boost.Python、SIP等,此外,Cython由于可以直接集成C/C++代码,并方便的生成Python模块,故也可以完成扩展Python的任务。

此处选用SWIG的一个重要原因是,他不仅可用于python,也可用于其他语言。如今SWIG已经支持c/c++的好基友java,主流的脚本语言python,perl,ruby,PHP,JavaScript,tcl,lua,还有Go,c#还有R;SWIG是基于配置的,也就是说,原则上一套配置改变不同的编译方法就能适用各种语言(当然,这是理想情况了...)

SWIG安装方便,有Windows的预编译包,解压即用,绿色健康。主流Linux通常集成SWIG的包,也可以下载源码自己编译,SWIG非常小巧,通常安装不会出什么问题。

用SWIG扩展Python,你需要一个待扩展的c/c++库。这个库可能是你自己写的,也有可能是某个项目提供的。这里举一个不浮夸的例子:希望在python中用到SSE4指令集的CRC32指令

首先打开指令集的文档:https://link.zhihu.com/?target=https%3A//software.intel.com/en-us/node/514245  可以看到有6个函数,分析函数的原型,其参数和返回值都是简单的整数,于是书写SWIG的配置(为了简化起见,未包含2个64位函数):

/* File: mymodule.i */

%module mymodule

%{

#include "nmmintrin.h"

%}

int _mm_popcnt_u32(unsigned int v);

unsigned int _mm_crc32_u8 (unsigned int crc, unsigned char v);

unsigned int _mm_crc32_u16(unsigned int crc, unsigned short v);

unsigned int _mm_crc32_u32(unsigned int crc, unsigned int v);

接下来使用SWIG将这个配置文件编译为所谓Python Module Wrapper

swig -python mymodule.i

得到一个mymodule_wrap.c和一个mymodule.py。把它编译为python扩展:

Windows:

cl /LD mymodule_wrap.c /o _mymodule.pyd -IC:\Python27\include C:\Python27\libs\python27.lib

Linux:

gcc -fPIC -shared mymodule_wrap.c -o _mymodule.so -I/usr/include/python2.7/ -lpython2.7

注意输出文件名前面要加一个下划线。现在可以立即在python下使用这个module了:

>>>import mymodule

>>>mymodule._mm_popcnt_u32(10)

2

回顾这个配置文件分为3个部分:

  1. 定义module名称mymodule,通常,module名称要和文件名保持一致。
  2. %{ %} 包裹的部分是C语言的代码,这段代码会原封不动的复制到mymodule_wrap.c
  3. 欲导出的函数签名列表。直接从头文件里复制过来即可。

还记得本文第2节的那个great_function吗?有了SWIG,事情就会变得如此简单:

/* great_module.i */

%module great_module

%{

int great_function(int a) {

return a + 1;

}

%}

int great_function(int a);

换句话说,SWIG自动完成了诸如Python类型转换,module初始化,导出代码表生成的诸多工作

对于C++,SWIG也可以应对,例如有一下c++类的定义:

//great_class.h

#ifndef GREAT_CLASS

#define GREAT_CLASS

class Great {

private:

int s;

public:

void setWall (int _s) {s = _s;};

int getWall () {return s;};

};

#endif // GREAT_CLASS

对应的SWIG配置文件:

/* great_class.i */

%module great_class

%{

#include "great_class.h"

%}

%include "great_class.h"

这里不再重新敲一遍class的定义了,直接使用SWIG的%include指令

SWIG编译时要加-c++这个选项,生成的扩展名为cxx

swig -c++ -python great_class.i

Windows下编译:

cl /LD great_class_wrap.cxx /o _great_class.pyd -IC:\Python27\include C:\Python27\libs\python27.lib

linux下使用c++编译:

g++ -fPIC -shared great_class_wrap.cxx -o _great_class.so  -I/usr/include/python2.7/ -lpython2.7

在python交互模式下测试:

>>>import great_class

>>>c = great_class.Great()

>>>c.setWall(5)

>>>c.getWall()

5

也就是说c++的class会直接映射到python class

SWIG非常强大,对于python接口而言,简单类型,甚至指针,都无需人工干涉即可自动转换,而复杂类型,尤其是自定义类型,SWIG提供了typemap供转换。但是一旦使用了typemap,配置文件将不再在各个语言中通用。

参考资料:
SWIG的官方文档,质量比较高。SWIG Users Manual
有个对应的中文版官网,很多年没有更新了。

写在最后:

由于CPython自身的结构设计合理,使得python的c/c++扩展非常容易。如果打算快速完成任务Cython(c/c++调用python)和SWIG(Python调用C/C++)是很不错的选择。但是一旦涉及到比较复杂的转换任务,无论是继续使用Cython还是SWIG,仍然需要学习Python源代码。

以上是 c++与python混合编程 的全部内容, 来源链接: utcz.com/z/386505.html

回到顶部