欧拉路径与电路
欧拉路径是一条路径,通过它我们可以一次访问每个边缘。我们可以多次使用相同的顶点。欧拉电路是欧拉路径的一种特殊类型。当欧拉路径的起始顶点也与该路径的终止顶点相连时,则称为欧拉电路。
要检测路径和电路,我们必须遵循以下条件-
该图必须已连接。
当恰好两个顶点具有奇数度时,它就是一条欧拉路径。
现在,当无向图的所有顶点都没有奇数度时,那就是欧拉回路。
输入输出
Input:Adjacency matrix of a graph.
0 1 1 1 0
1 0 1 0 0
1 1 0 0 0
1 0 0 0 1
0 0 0 1 0
Output:
该图具有欧拉路径。
算法
遍历(u,已访问)
输入: 起始节点u和访问节点,以标记访问了哪个节点。
输出- 遍历所有连接的顶点。
Beginmark u as visited
for all vertex v, if it is adjacent with u, do
if v is not visited, then
traverse(v, visited)
done
End
isConnected(图)
输入-图形。
输出-如果已连接图形,则为True。
Begindefine visited array
for all vertices u in the graph, do
make all nodes unvisited
traverse(u, visited)
if any unvisited node is still remaining, then
return false
done
return true
End
isEulerian(图)
输入-给定的图。
输出-如果不是欧拉则返回0,如果具有欧拉路径则返回1,如果找到欧拉回路则返回2
Beginif isConnected() is false, then
return false
define list of degree for each node
oddDegree := 0
for all vertex i in the graph, do
for all vertex j which are connected with i, do
increase degree
done
if degree of vertex i is odd, then
increase dooDegree
done
if oddDegree > 2, then
return 0
if oddDegree = 0, then
return 2
else
return 1
End
示例
#include<iostream>#include<vector>
#define NODE 5
using namespace std;
int graph[NODE][NODE] = {
{0, 1, 1, 1, 0},
{1, 0, 1, 0, 0},
{1, 1, 0, 0, 0},
{1, 0, 0, 0, 1},
{0, 0, 0, 1, 0}
};
/* int graph[NODE][NODE] = {
{0, 1, 1, 1, 1},
{1, 0, 1, 0, 0},
{1, 1, 0, 0, 0},
{1, 0, 0, 0, 1},
{1, 0, 0, 1, 0}
};
*/ //uncomment to check Euler Circuit
/* int graph[NODE][NODE] = {
{0, 1, 1, 1, 0},
{1, 0, 1, 1, 0},
{1, 1, 0, 0, 0},
{1, 1, 0, 0, 1},
{0, 0, 0, 1, 0}
};
*/ //Uncomment to check Non Eulerian Graph
void traverse(int u, bool visited[]) {
visited[u] = true; //mark v as visited
for(int v = 0; v<NODE; v++) {
if(graph[u][v]) {
if(!visited[v])
traverse(v, visited);
}
}
}
bool isConnected() {
bool *vis = new bool[NODE];
//对于所有顶点u作为起点,检查所有节点是否可见
for(int u; u < NODE; u++) {
for(int i = 0; i<NODE; i++)
vis[i] = false; //initialize as no node is visited
traverse(u, vis);
for(int i = 0; i<NODE; i++) {
if(!vis[i]) //if there is a node, not visited by traversal, graph is not connected
return false;
}
}
return true;
}
int isEulerian() {
if(isConnected() == false) //when graph is not connected
return 0;
vector<int> degree(NODE, 0);
int oddDegree = 0;
for(int i = 0; i<NODE; i++) {
for(int j = 0; j<NODE; j++) {
if(graph[i][j])
degree[i]++; //increase degree, when connected edge found
}
if(degree[i] % 2 != 0) //when degree of vertices are odd
oddDegree++; //count odd degree vertices
}
if(oddDegree > 2) //when vertices with odd degree greater than 2
return 0;
return (oddDegree)?1:2; //when oddDegree is 0, it is Euler circuit, and when 2, it is Euler path
}
int main() {
int check;
check = isEulerian();
switch(check) {
case 0: cout << "该图不是欧拉图。";
break;
case 1: cout << "该图具有欧拉路径。";
break;
case 2: cout << "该图具有欧拉回路。";
break;
}
}
输出结果
该图具有欧拉路径。
以上是 欧拉路径与电路 的全部内容, 来源链接: utcz.com/z/361042.html